Abstract:
PROBLEM TO BE SOLVED: To provide transparent conductors and methods of manufacturing the same, in particular, high-throughput coating methods.SOLUTION: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires 16 which may be embedded in a matrix 18. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates. There is provided transparent conductors having desirable electrical, optical and mechanical properties, in particular, transparent conductors that are adaptable to any substrates, and can be manufactured and patterned in a low-cost, high-throughput process.
Abstract:
Systems, devices, and methods for designing and/or manufacturing transparent conductors having nanowires. A system is operable to evaluate optical and electrical manufacturing criteria for a transparent conductor. The system includes a database including stored reference transparent conductor data, and a controller subsystem configured to compare input acceptance manufacturing criteria for a transparent conductor to stored reference transparent conductor data.
Abstract:
NANOWIRES-BASED TRANSPARENT CONDUCTORS A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates
Abstract:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
Abstract:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.Fig. 16C
Abstract:
Method of patterning nanowire-based transparent conductors are described. In particular, the methods are directed to partial etching that generates low-visibility or invisible patterns.
Abstract:
NANOWIRES-BASED TRANSPARENT CONDUCTORS A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates
Abstract:
Disclosed herein is a method of fabricating a transparent conductor which comprises depositing a plurality of metal nanowires on a surface of a substrate, the metal nanowires being dispersed in a liquid; and forming a metal nanowire network layer on the substrate by allowing the liquid to dry, depositing a matrix material on the metal nanowire network layer, and curing the matrix material to form a matrix, the matrix and the metal nanowires embedded therein forming a conductive layer, wherein the substrate is flexible, and wherein the substrate is driven by a rotating reel along a traveling path, and the metal nanowires are deposited at a first deposition station along the traveling path, and the matrix material is deposited at a second deposition station along the traveling path.