Abstract:
PROBLEM TO BE SOLVED: To facilitate to mount a spacer wall between a face plate and a back plate of a flat panel display. SOLUTION: A coupling electrode is installed on the face plate so that an electrostatic force may be added on spacer stands 111, 112. By this, the spacer stands are supported at a constant position during mounting of the spacer wall. Since the spacer wall is expanded mechanically and/or thermally, a tensile force useful to correct waving distortion of the spacer wall is given to the spacer wall so that it can be contracted. COPYRIGHT: (C)2004,JPO
Abstract:
Portions (40 and 44) of a structure, such as a flat-panel display, are positioned such that a sealing area (40S) of one portion is at least partially separated from a corresponding sealing area (44S) of another portion such that a gap (48) at least partially separates the two sealing areas, typically by height of 25 microns or more. Energy is applied in a "gap jumping technique" to locally heat material of at least one portion along the sealing area such that the material bridges the gap and seals the portions (40 and 44) together. A laser is typically employed to locally melt and draw the material into the gap by a combination of factors such as surface tension and capillary action. A first part of the gap jumping technique may be performed in a non-vacuum environment to tack the portions together, but the gap jumping technique is typically completed in a vacuum to form an evacuated panel.
Abstract:
A getter (50 or 74) situated in a cavity of a hollow structure, such as a flat-panel device, is activated by directing light energy locally through part of the hollow structure and onto the getter. The light energy is typically provided by a laser beam (60). The getter, typically of the non-evaporable type, is usually inserted as a single piece of gettering material into the cavity. The getter normally can be activated/re-activated multiple times in this manner, typically during the sealing of different parts of the structure together. The getter-containing cavity can be formed by a pair of plate structures (40 and 42) sandwiched around and outer wall (44), or by an auxiliary compartment (72) connected to a larger main compartment (70) typically constituted by the plate structures and outer wall.
Abstract:
Methods and structures are provided which support spacer walls (100) in a position which facilitates installation of the spacer walls (100) between a faceplate and backplate of a flat display. In one embodiment, spacer feet (111, 112) are formed at the opposing ends of the spacer wall. Tacking electrodes can be provided on the faceplate to assert an electrostatic force on the spacer feet (111, 112), thereby holding the spacer feet in place during installation of the spacer wall. The spacer wall can be mechanically and/or thermally expanded prior to attaching both ends of the spacer wall to the faceplate. The spacer wall is then allowed to contract, thereby introducing tension into the spacer wall which tends to straighten any inherent wavines in the spacer wall. Alternatively, spacer clips can be clamped onto opposing ends of a spacer wall to support the spacer wall during installation. The spacer clips can provide electrical connections to face electrodes located on the spacer wall.