Abstract:
PROBLEM TO BE SOLVED: To facilitate to mount a spacer wall between a face plate and a back plate of a flat panel display. SOLUTION: A coupling electrode is installed on the face plate so that an electrostatic force may be added on spacer stands 111, 112. By this, the spacer stands are supported at a constant position during mounting of the spacer wall. Since the spacer wall is expanded mechanically and/or thermally, a tensile force useful to correct waving distortion of the spacer wall is given to the spacer wall so that it can be contracted. COPYRIGHT: (C)2004,JPO
Abstract:
A flat panel display apparatus comprising: a faceplate, a backplate disposed opposing said faceplate, said faceplate and said backplate adapted to be connected in a sealed environment such that a low pressure region exists between said faceplate and said backplate; a spacer assembly (900) disposed within said sealed environment, said spacer assembly supporting said faceplate and said backplate against forces acting in a direction towards said sealed environment, said spacer assembly tailored to provide a secondary electron emission coefficient of approximately 1 for said spacer assembly when said spacer assembly is subjected to flat panel display operating voltages, said spacer assembly further including a spacer structure (902); and a coating material (904) applied to at least a portion of said spacer structure, wherein said coating material is comprised of a layered material that is oriented with its basal plane parallel to a face of said spacer structure (902).
Abstract:
Methods and structures are provided which support spacer walls (100) in a position which facilitates installation of the spacer walls (100) between a faceplate and backplate of a flat display. In one embodiment, spacer feet (111, 112) are formed at the opposing ends of the spacer wall. Tacking electrodes can be provided on the faceplate to assert an electrostatic force on the spacer feet (111, 112), thereby holding the spacer feet in place during installation of the spacer wall. The spacer wall can be mechanically and/or thermally expanded prior to attaching both ends of the spacer wall to the faceplate. The spacer wall is then allowed to contract, thereby introducing tension into the spacer wall which tends to straighten any inherent wavines in the spacer wall. Alternatively, spacer clips can be clamped onto opposing ends of a spacer wall to support the spacer wall during installation. The spacer clips can provide electrical connections to face electrodes located on the spacer wall.