Abstract:
A method for creating a solid layer (36A or 52A) through which openings (38 or 54) extend entails subjecting particles (30) suspended in a fluid (26) to an electric field (EA) to cause a number of the particles to move towards, and accumulate over, a structure placed in the fluid. The structure, including the so-accumulated particles, is removed from the fluid. Solid material is deposited over the structure at least in the space between the so-accumulated particles. The particles, including any overlying material (36B or 52B), are removed. The remaining solid material forms the solid layer through which openings extend at the locations of the so-removed particles. The structure is typically a partially finished electron-emitting device. The solid layer is then typically either a gate layer for the electron-emitting device or a layer used in forming the gate layer.
Abstract:
A liquid chemical formulation suitable for making a thin solid polycarbonate film contains polycarbonate material and a liquid typically capable of dissolving the polycarbonate to a concentration of at least 1 %. The liquid also typically has a boiling point of at least 80 °C. Examples of the liquid include pyridine, a ring-substituted pyridine derivative, pyrrole, a ring-substituted pyrrole derivative, pyrrolidine, a pyrrolidine derivative, chlorobenzene, and cyclohexanone. A liquid film (36A) of the liquid chemical formulation is formed over a substructure (30) and processed to remove the liquid. In subsequent steps, the resultant solid polycarbonate film can serve as a track layer through which charged particles (70) are passed to form charged-particle tracks (72). Apertures (74) are created through the track layer by a process that entails etching along the tracks. The aperture-containing polycarbonate track layer is typically employed in fabricating a gated electron-emitting device.