Abstract:
A method for forming a structured doped cerium oxide nanoparticle including the steps of forming a first aqueous cerium(lll) reaction mixture, with optional metal/s other than cerium, a base, and a stabilizer; introducing an oxidant to singly oxidize cerium (III), followed by thermal formation of a doped cerium oxide nanoparticle core; then providing a second reaction mixture of one or more metal ions other than cerium, and optionally cerium (III) ions and sufficient cerium (III) oxidant, followed by thermally converting the mixture into a shell around the doped cerium oxide nanoparticle core, wherein the ratio of metal ions in the core differs from the ratio of metal ions in the shell. The disclosed structured doped cerium oxide nanoparticle may exhibit cubic fluorite crystal structure and possess a diameter in the range 1 nm-20 nm. A dispersion of the developed nanoparticle may be used as a fuel additive.
Abstract:
A process for making cerium-containing oxide nanoparticles includes providing an aqueous reaction mixture containing a source of cerous ion, optionally a source of one or more metal ions (M) other than cerium, a source of hydroxide ion, at least one monoether carboxylic acid nanoparticle stabilizer wherein the molar ratio of said monoether carboxylic acid nanoparticle stabilizers to total metal ions is greater than 0.2, and an oxidant at an initial temperature in the range of about 20°C to about 95°C. Temperature conditions are provided effective to enable oxidation of cerous ion to ceric ion, thereby forming a product dispersion of cerium-containing oxide nanoparticles, optionally containing one or more metal ions (M), Ce
Abstract:
A process for making cerium-containing oxide nanoparticles includes providing an aqueous reaction mixture containing a source of cerous ion, optionally a source of one or more metal ions (M) other than cerium, a source of hydroxide ion, at least one monoether carboxylic acid nanoparticle stabilizer wherein the molar ratio of said monoether carboxylic acid nanoparticle stabilizers to total metal ions is greater than 0.2, and an oxidant at an initial temperature in the range of about 20°C to about 95°C. Temperature conditions are provided effective to enable oxidation of cerous ion to ceric ion, thereby forming a product dispersion of cerium-containing oxide nanoparticles, optionally containing one or more metal ions (M), Ce1-xMxO2-d, wherein "x" has a value from about 0.0 to about 0.95. The nanoparticles may have a mean hydrodynamic diameter from about 1 nm to about 50 nm, and a geometric diameter of less than about 45 nm.
Abstract:
A method for forming a structured doped cerium oxide nanoparticle including the steps of forming a first aqueous cerium(lll) reaction mixture, with optional metal/s other than cerium, a base, and a stabilizer; introducing an oxidant to singly oxidize cerium (III), followed by thermal formation of a doped cerium oxide nanoparticle core; then providing a second reaction mixture of one or more metal ions other than cerium, and optionally cerium (III) ions and sufficient cerium (III) oxidant, followed by thermally converting the mixture into a shell around the doped cerium oxide nanoparticle core, wherein the ratio of metal ions in the core differs from the ratio of metal ions in the shell. The disclosed structured doped cerium oxide nanoparticle may exhibit cubic fluorite crystal structure and possess a diameter in the range 1 nm-20 nm. A dispersion of the developed nanoparticle may be used as a fuel additive.
Abstract:
A method for forming a structured doped cerium oxide nanoparticle including the steps of forming a first aqueous cerium(lll) reaction mixture, with optional metal/s other than cerium, a base, and a stabilizer; introducing an oxidant to singly oxidize cerium (III), followed by thermal formation of a doped cerium oxide nanoparticle core; then providing a second reaction mixture of one or more metal ions other than cerium, and optionally cerium (III) ions and sufficient cerium (III) oxidant, followed by thermally converting the mixture into a shell around the doped cerium oxide nanoparticle core, wherein the ratio of metal ions in the core differs from the ratio of metal ions in the shell. The disclosed structured doped cerium oxide nanoparticle may exhibit cubic fluorite crystal structure and possess a diameter in the range 1 nm-20 nm. A dispersion of the developed nanoparticle may be used as a fuel additive.
Abstract:
A process for making cerium-containing oxide nanoparticles includes providing an aqueous reaction mixture containing a source of cerous ion, optionally a source of one or more metal ions (M) other than cerium, a source of hydroxide ion, at least one monoether carboxylic acid nanoparticle stabilizer wherein the molar ratio of said monoether carboxylic acid nanoparticle stabilizers to total metal ions is greater than 0.2, and an oxidant at an initial temperature in the range of about 20°C to about 95°C. Temperature conditions are provided effective to enable oxidation of cerous ion to ceric ion, thereby forming a product dispersion of cerium-containing oxide nanoparticles, optionally containing one or more metal ions (M), Ce1-xMxO2-d, wherein "x" has a value from about 0.0 to about 0.95. The nanoparticles may have a mean hydrodynamic diameter from about 1 nm to about 50 nm, and a geometric diameter of less than about 45 nm.