Abstract:
A direct memory access (DMA) engine (70) has virtually all control in connection with data transfers that can involve one or both of primary and secondary controllers. The DMA engine receives a command related to a data transfer from a processor (78) associated with the primary controller. This command causes the DMA engine to access processor memory (74) to obtain medtdata therfrom. In performing a DMA operation, the metadata enables the DMA engine to conduct data transfers between local memory (82) and remote memory. In performing exclusive OR operations, the DMA engine is involved with conducting data transfers using local memory.
Abstract:
A direct memory access (DMA) engine has virtually all control in connection with data transfers that can involve one or both of primary and secondary controllers. The DMA engine receives a command related to a data transfer from a processor associated with the primary controller. This command causes the DMA engine to access processor memory to obtain medtdata therfrom. In performing a DMA operation, the metadata enables the DMA engine to conduct data transfers between local memory and remote memory. In performing exclusive OR operations, the DMA engine is involved with conducting data transfers using local memory.
Abstract:
A direct memory access (DMA) engine has virtually all control in connection with data transfers that can involve one or both of primary and secondary controllers. The DMA engine receives a command related to a data transfer from a processor associated with the primary controller. This command causes the DMA engine to access processor memory to obtain metadata therefrom. In performing a DMA operation, the metadata enables the DMA engine to conduct data transfers between local memory and remote memory. In performing exclusive OR operations, the DMA engine is involved with conducting data transfers using local memory.
Abstract:
A data storage system configured for efficient mirroring of data between paired redundant controllers is provided. More particularly, in response to the receipt of customer data from a host for storage, a first controller segments the received customer data into one or more frames of data. In addition, the first controller determines or associates certain metadata for each frame of customer data, and inserts that metadata in the corresponding frame. The frames, including the metadata, are provided to a secondary controller. The secondary controller stores the customer data from a received frame in memory, and stores the corresponding metadata in another location of memory that is indexed to the location where the customer data was stored. The secondary controller may also associate a count value with each frame of data in order to distinguish the most recent frame of data should frames in memory have matching metadata.
Abstract:
A system for performing an efficient mirrored posted-write operation having first and second RAID controllers in communication via a PCI-Express link is disclosed. The first bus bridge transmits a PCI-Express memory write request TLP to the second bus bridge. The TLP header includes an indication of whether the first CPU requests a certification that certifies the payload data has been written to the second write cache memory. If the indication requests the certification, the second bus bridge automatically transmits the certification to the first bus bridge independent of the second CPU, after writing the payload data to the second write cache memory. The first bus bridge generates an interrupt to the first CPU in response to receiving the certification. The certified transfer may be used to validate and/or invalidate mirrored copies of a write cache directory on the RAID controllers, among other uses.
Abstract:
A bus bridge apparatus for performing broadcasted writes to redundant memory subsystems in a network storage controller is disclosed. The bus bridge includes a PCI-X target that receives a write command on a first PCI-X bus on one side of the bridge. The target is coupled to two PCI-X masters coupled to primary and secondary memory subsystems by respective PCI-X buses on the other side of the bridge. A first FIFO buffers the write command data between the target and the first master, and a second FIFO buffers a copy of the data between the target and the second master. The first and second masters concurrently retransmit the write command on their respective PCI-X buses to the primary and secondary memory subsystems. However, the second master only retransmits if broadcasting is enabled and the write command address is in a broadcast address range known by the bus bridge.