Abstract:
A method and system are provided for achieving spatial diversity of a wireless communications network. The method comprises arranging antennas on a transmitting wireless station into a plurality of antenna subgroups, wherein each of the antenna subgroups forms a virtual antenna, creating a plurality of beamformed MIMO channels using the plurality of virtual antennas, wherein each of the beamformed MIMO channel comprises a plurality of sub-carriers and corresponds to a virtual antenna, dividing sub-carriers in each of the plurality of beamformed MIMO channels into at least a first and second cluster, distributing a first amount of transmitting power to the first cluster and a second amount of transmitting power to the second cluster, wherein the first amount of transmitting power is larger than the second amount of transmitting power.
Abstract:
Techniques are provided for selecting channels for use by access points operating in a wireless local area network. Metrics are computed for at least one set of radio frequency (RF) channels, wherein the set of RF channels comprises at least two RF channels in a frequency band that are available for use by a wireless network for a wider bandwidth mode that combines bandwidth of two or more RF channels. Alignment of individual primary and secondary RF channels is determined in the set of RF channels for operation of at least first and second wireless networks. A bias is applied to the metrics for each RF channel that is a member of the set of RF channels for the primary channel depending on alignment of the primary and secondary channels of the respective first and second wireless networks to produce adjusted metrics, based on which RF channels are assigned.
Abstract:
Techniques are provided to enable wireless communication between first and second wireless communication devices each having a plurality of antennas, where the second device sends the transmissions via less than all of its plurality of antennas. Each transmission may comprise a plurality of time-frequency instances. At the first communication device, data is derived representing parameters of a communication channel between the plurality of antennas of the first device and all of the plurality of antennas of the second device from the transmissions received at the plurality of antennas of the first device. Beamforming weights for transmitting one or more signal streams via the plurality of antennas of the first device to the plurality of antennas of the second device are computed based on the data representing parameters of the communication channel between the plurality of antennas of the first device and the plurality of antennas of the second device. The beamforming weights are applied to the one or more signal streams to be transmitted via the plurality of antennas of the first device to the plurality of antennas of the second device.
Abstract:
Techniques are provided to compute the carrier to interference-plus-noise ratio (CINR) in a wireless communication system using log-likelihood ratio (LLR) data generated from a received transmission. The LLR data are collected as they are sent from a detector to a forward error correction (FEC) decoder in a wireless communications device. In one embodiment, decision-aided LLR based CINR is computed using the decoded bits output from the FEC decoder as feedback. In another embodiment, blind LLR based CINR is computed without feedback. The CINR may be used to adjust a modulation and/or coding parameters associated with wireless communication between wireless communication devices.
Abstract:
Disclosed in an example embodiment is an apparatus comprising a transmitter and processing logic coupled with the transmitter. The processing logic is configured to send data via the transmitter. The processing logic generates a request to send frame. The processing logic encodes data representative of a bandwidth parameter set in the request to send frame. The processing logic transmits the request to send frame via the transmitter.
Abstract:
A method and system are provided for improving the performance of a trellis-based decoder. States with reduced uncertainty (SRUs) are defined for one or more predetermined fields in an encoded message. Metrics are set for the SRUs such that candidate paths through a trellis-based decoding process are eliminated for those states that are not SRUs.
Abstract:
The present invention discloses a method and system for signal communication in a multi-input multi-output network. The method creates beamformed channels by calculating one or more beamforming weighting vectors corresponding to one or more antennas on the receiving wireless station based on the predetermined receiving signals. The transmitting wireless station transmits one or more beamformed transmission signals to the receiving wireless station using the calculated beamforming weighting vectors for targeting at the antennas thereon, thereby creating two or more detectably uncorrelated transmission signals received at the receiving wireless station.