Abstract:
A system and method improves linearly-polarized microstrip patch antenna performance and fabrication through the incorporation of a pin fin ground plane and an integral antenna feed assembly. In one embodiment, a patch antenna system includes an antenna area with a patch antenna that provides radio communications. A heat dissipation member is coupled to the antenna area and includes a plurality of pins that provide for both the dissipation of heat from the antenna area and a ground plane for the antenna area. An antenna feed line is further coupled with the antenna patch for providing an electrical connection from the antenna patch to other electronic circuitries, such as a wireless device that may be mechanically coupled to the heat dissipation member. Heat generated during the operation of the wireless device is directed to ambient air by way of the heat dissipation member.
Abstract:
The present invention discloses a proactive gain control system for a communications receiver. The proactive gain control system includes a variable gain module for outputting an output signal in response to an input signal. A detector detects the output signal and outputs a detection signal representing a signal strength of the output signal. A traffic monitor monitors the output signal and outputs a traffic profile signal indicating that a traffic profile for the input signal will change. A gain computing module outputs a gain adjustment value in response to the detection signal and the traffic profile signal. A gain control module outputs a gain control signal to the variable gain module, which determines a gain between the input and output signals, in response to the gain adjustment value.
Abstract:
A smart antenna calibration system is disclosed for calibrating an antenna array having a plurality of antennas. Each antenna has a calibration coupler for providing a monitoring signal indicative of a signal passing through a transceiver associated thereof, and a processing unit including at least one signal splitter that splits at least one monitoring signal and a combiner array comprising one or more combiners for combining at least two split monitoring signals from first and second antennas to produce a first combined signal representing an in-phase sum and a second combined signal representing a quadrature sum. A power detector is in communication with the processing unit, which is configured to estimate a power level of the signal passing each of the first and second antennas and the in-phase power and quadrature power of the in-phase and quadrature sums for determining a phase difference of the signal on the antennas.
Abstract:
A hybrid time-spatial multiplexing technique is provided for beamforming broadcast messages to mobile stations (20) that may be within a coverage region or cell (30) of a base station (10). The coverage region is divided into a plurality of plurality of segments (40-46). The mobile stations are assigned to at least one of the segments based on their locations within the coverage region or other criteria. The base station computes beamforming antenna weights which are configured to produce a radiation beam pattern (50-56) from a plurality of antennas (12) of the base station to respective ones of each of the plurality of segments in the region. A broadcast message is transmitted to each segment of the region in a time-division multiplexed manner using the beamforming antenna weights associated with the radiation beam pattern for the corresponding segment.
Abstract:
The present invention discloses a proactive gain control system for a communications receiver. The proactive gain control system includes a variable gain module for outputting an output signal in response to an input signal. A detector detects the output signal and outputs a detection signal representing a signal strength of the output signal. A traffic monitor monitors the output signal and outputs a traffic profile signal indicating that a traffic profile for the input signal will change. A gain computing module outputs a gain adjustment value in response to the detection signal and the traffic profile signal. A gain control module outputs a gain control signal to the variable gain module, which determines a gain between the input and output signals, in response to the gain adjustment value.
Abstract:
The present invention discloses a method and system for signal communication in a multi-input multi-output network. The method creates beamformed channels by calculating one or more beamforming weighting vectors corresponding to one or more antennas on the receiving wireless station based on the predetermined receiving signals. The transmitting wireless station transmits one or more beamformed transmission signals to the receiving wireless station using the calculated beamforming weighting vectors for targeting at the antennas thereon, thereby creating two or more detectably uncorrelated transmission signals received at the receiving wireless station.