Abstract:
An electronically a steerable and switchable antenna array is provided that can produce a first beam with a first coverage range and a second beam with a second coverage range by selecting one of a first and a second beamwidth for both the first and second beams; in response to selecting the first beamwidth: switching signal inputs to narrow-beam antenna arrays; steering the first beam to one of a first positive, negative, or zero offset position; independently steering the second beam to one of a second positive, negative offset, or zero offset position; and transmitting signals received from the signal inputs via the first beam and the second beam; and in response to selecting the second beamwidth: switching signal inputs to wide-beam antenna arrays; and transmitting signals received from the signal inputs via the first beam and the second beam.
Abstract:
A first device having a plurality of antennas wirelessly transmits multiple series of test packets to a second device having one or more antennas, each series of test packets being transmitted with a different level of interference imposed on the test packets. The first device determines a packet error rate for each series of test packets transmitted by the first device. The first device derives an estimate of an interference cancellation capability of the second device based on the packet error rate for different levels of interference.
Abstract:
Noise floor degradation detection may be provided. First, an incremental packet loss rate for a secondary radio may be calculated that indicates an impact on packet reception on the secondary radio due to transmissions by a primary radio. The secondary radio and the primary radio may comprise an access point. Next, it may be determined that the incremental packet loss rate is greater than a predetermined value. A configuration of the access point may be changed in response to determining that the incremental packet loss rate is greater than the predetermined value.
Abstract:
Noise floor degradation detection may be provided. First, an incremental packet loss rate for a secondary radio may be calculated that indicates an impact on packet reception on the secondary radio due to transmissions by a primary radio. The secondary radio and the primary radio may comprise an access point. Next, it may be determined that the incremental packet loss rate is greater than a predetermined value. A configuration of the access point may be changed in response to determining that the incremental packet loss rate is greater than the predetermined value.
Abstract:
A first device having a plurality of antennas wirelessly transmits multiple series of test packets to a second device having one or more antennas, each series of test packets being transmitted with a different level of interference imposed on the test packets. The first device determines a packet error rate for each series of test packets transmitted by the first device. The first device derives an estimate of an interference cancellation capability of the second device based on the packet error rate for different levels of interference.