Abstract:
A stabilized alpha metal matrix provides an improved ductility, creep strength, and corrosion resistance against irradiation in a zirconium alloy containing tin in a range of 0.45 to 0.75 wt. %, and typically 0.6 wt. %; iron in a range of 0.4 to 0.53 wt. %, and typically 0.45 percent; chromium in a range of 0.2 to 0.3 wt. %, and typically 0.25 percent; niobium in a range of 0.3 to 0.5 wt. %, and typically 0.45 wt. %; nickel in a range of 0.012 to 0.03 wt. %, and typically 0.02 wt. %; silicon in a range of 50 to 200 ppm, and typically 100 ppm; and oxygen in a range 1000 to 2000 ppm, and typically 1600 ppm, with the balance zirconium. The addition of iron and niobium improves mechanical properties of the alloy with its lower lever of tin, while corrosion resistance is addressed by having an iron level of 0.45 wt. % and an iron/chromium ratio on the order of 1.5. The addition of niobium also conters the effect of higher iron on the hydrogen absorption characteristics of the alloy. The addition of nickel, silicon, carbon and oxygen as alloying elements provide desired corrosion resistance and strength.
Abstract:
A stabilized alpha metal matrix provides an improved ductility, creep strength, and corrosion resistance against irradiation in a zirconium alloy containing on a weight percentage basis tin in a range of 0.4 to 1.0 percent and typically 0.5; iron in a range of 0.3 to 0.6 percent, and typically 0.46 percent; chromium in a range of 0.2 to 0.4 percent, and typically 0.23 percent; silicon in a range of 50 to 200 ppm, and typically 100 ppm; and oxygen in a range of 1200 to 2500 ppm, typically 1800 to 2200 ppm. The high oxygen level assists in reducing hydrogen uptake of the alloy compared to Zircaloy-4, for example.