Abstract:
Base station antennas include a main module that has a first backplane that includes a first reflector. A vertically-extending array of first radiating elements is mounted to extend forwardly from the first reflector, and at least one first RF port is coupled to the vertically-extending array of first radiating elements. These antennas further include a sub-module that is attached to the first backplane. The sub-module includes a second backplane that has a second reflector that is separate from the first reflector. A vertically-extending array of second radiating elements is mounted to extend forwardly from the second reflector and is transversely spaced-apart from the vertically-extending array of first radiating elements. A plurality of second RF ports are coupled to the vertically-extending array of second radiating elements. The vertically-extending array of first radiating elements and the vertically-extending array of second radiating elements are configured to serve a common sector of a base station.
Abstract:
Radiating elements include a first dipole radiator that extends along a first axis, the first dipole radiator including a first pair of dipole arms that are configured to resonate at a first frequency and a second pair of dipole arms that are configured to resonate at a second frequency that is different than the first frequency. Each dipole arm in the first pair of dipole arms comprises a plurality of widened sections that are connected by intervening narrowed sections.
Abstract:
A communications antenna includes: an elongate reflector comprising a plurality of panels that define a regular polygonal profile, the reflector having a longitudinal axis; a plurality of circuit boards, each of the circuit boards mounted to a respective reflector panel; a plurality of subsets of radiating elements, each subset of radiating elements mounted in a column on a front surface of a respective circuit board; and a plurality of phase cables, each of the phase cables being mounted to two circuit boards disposed on diametrically opposed reflector panels, the phase cables being positioned forwardly of the circuit boards.
Abstract:
A base station antenna (BSA) includes a reflector having a main reflector surface thereon, which extends between first and second sidewalls thereof. First and second choke-within-a-choke assemblies are provided on first and second sides of the reflector, respectively. The first choke-within-a-choke assembly includes: a first relatively low-band choke defined on one side thereof by the first sidewall of the reflector, and a first relatively high-band choke contacting on two sides thereof a rear surface of the reflector and an inner surface of the first sidewall. The second choke-within-a-choke assembly includes: a second relatively low-band choke defined on one side thereof by the second sidewall of the reflector, and a second relatively high-band choke contacting on two sides thereof the rear surface of the reflector and an inner surface of the second sidewall.
Abstract:
A lensed multi-beam base station antenna may include a plurality of linear arrays of radiating elements, a plurality of reflectors, a sidelobe suppressor, and a lens. Each array may include a plurality of radiating elements (e.g., two or more radiating elements) that extends forwardly from a planar section of a respective reflector. The sidelobe suppressor may comprise radiofrequency (RF) absorber material that absorbs energy that is emitted by a first of the arrays and that is directed toward a reflector underneath a second of the arrays. The sidelobe suppressor may comprise a RF choke that reduces the RF energy emitted by a first of the arrays that is directed toward a reflector underneath a second of the arrays.
Abstract:
A multi-beam antenna includes a plurality of radiating elements and a lens that is positioned to receive electromagnetic radiation from at least one of the radiating elements, the lens comprising a composite dielectric material. The composite dielectric material comprises a foamed base dielectric material having particles of a high dielectric constant material embedded therein, the high dielectric constant material having a dielectric constant that is at least three times a dielectric constant of the foamed base dielectric material.
Abstract:
A cellular antenna having an array of radiating elements and a flat sheet of dielectric material in front of the antenna radiating elements and spaced about a half wavelength from the antenna phase center to provide an azimuth beam width that is narrower than without the dielectric sheet. The sheet of dielectric material may be continuous or segmented and a single layer or multi-layer. The amount of narrowing may be controlled by changing the thickness and dielectric constant of the dielectric sheet.
Abstract:
A multi-beam antenna includes a plurality of radiating elements and a lens that is positioned to receive electro-magnetic radiation from at least one of the radiating elements, the lens comprising a composite dielectric material. The composite dielectric material comprises a foamed base dielectric material having particles of a high dielectric constant material embedded therein, the high dielectric constant material having a dielectric constant that is at least three times a dielectric constant of the foamed base dielectric material.
Abstract:
A base station antenna, comprising a first linear array of dual-polarized low-band radiating elements that are configured to transmit radio frequency ("RF") signals in a first frequency band; a second linear array of mid-band radiating elements that are configured to transmit RF signals in a second frequency band; a third linear array of high-band radiating elements that are configured to transmit RF signals in a third frequency band; wherein the first linear array of dual-polarized low-band radiating elements is positioned between the second linear array of mid-band radiating elements and the third linear array of high-band radiating elements, wherein each low-band radiating element includes a first dipole having first and second dipole arms that extend along a first axis and a second dipole having third and fourth dipole arms that extend along a second axis, wherein the first dipole arm is shaped differently from the second dipole arm, and wherein the first dipole arm vertically overlaps one of the radiating elements in the second linear array of mid-band radiating elements.
Abstract:
A cellular antenna having an array of radiating elements and a flat sheet of dielectric material in front of the antenna radiating elements and spaced about a half wavelength from the antenna phase center to provide an azimuth beam width that is narrower than without the dielectric sheet. The sheet of dielectric material may be continuous or segmented and a single layer or multi-layer. The amount of narrowing may be controlled by changing the thickness and dielectric constant of the dielectric sheet.