Abstract:
A base station antenna includes an array that has a plurality of sub-arrays, each sub-array including at least one radiating element, wherein a first of the sub-arrays includes a first radiating element that is formed in a flexible substrate that is mounted on a rigid support.
Abstract:
Cable connector block assemblies for base station antennas are provided herein. A cable connector block assembly includes a block including a cable retention clip, a first metal piece, and a second metal piece. In some embodiments, the first and second metal pieces are in first and second recesses, respectively, of the block. Moreover, in some embodiments, the cable retention clip, the first metal piece, and the second metal piece are configured to receive different first, second, and third portions, respectively, of a cable.
Abstract:
A reduced wind load antenna includes: a radome having front, rear, and side surfaces; upper and lower end caps attached to upper and lower ends of the radome to define an internal cavity; and radiating elements positioned within the internal cavity and configured to transmit and receive radio frequency (RF) signals. The antenna includes at least one airflow separation delaying feature selected from the group consisting of: large radiused corners on the lower end cap; a domed upper end cap; a domed lower end cap; a plurality of protuberances on the front surface; a plurality of protuberances on each of the side surfaces; spiral ridges on the front surface; and a continuous protuberance on each of the side surfaces.
Abstract:
A radome has a base made of a light weight material having a dielectric constant of less than 2.0. A protective layer is secured to and at least partially covers an outer surface of the base. An antenna structure may be located inside of the radome to create a complete antenna. The light weight base material may be a solid having voids such as a solid foam and the protective layer may be a polyurea.
Abstract:
Base station antennas are provided that include a reflector assembly and a radiating element. The reflector assembly includes a reflector. The radiating element extends forwardly from the reflector. The reflector includes a nonmetallic substrate, and a metal layer mounted on the substrate.
Abstract:
Base station antennas include a RET actuator, a plurality of phase shifters and a plurality of mechanical linkages, where each mechanical linkage is connected between the RET actuator and a respective one or more of the phase shifters. The RET actuator includes a drive element, a rotatable element and a mechanical linkage selection system that is configured to move a selected one of the mechanical linkages into engagement with the drive element. The drive element is configured to move linearly in response to rotation of the rotatable element to move the selected one of the mechanical linkages.
Abstract:
A method of fabricating a monolithic feedboard assembly for a base station antenna, the method comprises injection molding a unitary frame that includes a feedboard section and at least one radiating element section and then selectively depositing metal on the unitary frame to form radio frequency transmission lines and radiators on the unitary frame to provide the monolithic feedboard assembly.
Abstract:
Base station antenna units include a first and second base station antennas that have respective first and second housings. The first housing includes a top end cap and the second housing includes a bottom end cap. A jumper cable that includes a first connector port is mounted in one of the top end cap or the bottom end cap, and a second connector port that is configured to mate with the first connector port is mounted in the other one of the top end cap or the bottom end cap. A longitudinal axis of the first connector port extends in a vertical direction and a longitudinal axis of the second connector port extends in the vertical direction.
Abstract:
A base station antenna (BSA) includes a reflector having a main reflector surface thereon, which extends between first and second sidewalls thereof. First and second choke-within-a-choke assemblies are provided on first and second sides of the reflector, respectively. The first choke-within-a-choke assembly includes: a first relatively low-band choke defined on one side thereof by the first sidewall of the reflector, and a first relatively high-band choke contacting on two sides thereof a rear surface of the reflector and an inner surface of the first sidewall. The second choke-within-a-choke assembly includes: a second relatively low-band choke defined on one side thereof by the second sidewall of the reflector, and a second relatively high-band choke contacting on two sides thereof the rear surface of the reflector and an inner surface of the second sidewall.
Abstract:
Multi-RET actuators include a plurality of shafts that have respective axially-drivable members mounted thereon. Each of axially-drivable member is mechanically linked to a respective one of a plurality of phase shifters. The multi-RET actuator further includes a motor having a drive shaft and a gear system that is configured to selectively couple the motor to the respective shafts. The gear system is configured so that rotation of the drive shaft in a first direction creates a mechanical linkage between the motor and a first of the shafts 1340/1342, and rotation of the drive shaft in a second direction that is opposite the first direction rotates the first of the shafts.