Measuring diameter of fibres, using light beam passed through cell containing fibre

    公开(公告)号:NZ334158A

    公开(公告)日:2000-09-29

    申请号:NZ33415899

    申请日:1999-02-12

    Abstract: Disclosed is a method/apparatus to determine any one of a plurality of parameters: shape, area, chemical composition, diameter, colour, number, thickness, width, length, absorptivity, reflectivity, transmittivity, dielectric constant, raman scattering profile, fluorescence, surface tension, roughness, profile, density, position and orientation. Also use of a plurality of energy beams as source energy: charged and neutral particle beams, gamma-, X-, micro-, optical and acoustic waves. The described apparatus determines the mean and standard deviation of a plurality of diameters of wool fibres, and includes a He-Ne laser (101), and a pinhole (102) which produce an expanding laser beam which passes through cell (105). Beam splitter (103) is operatively disposed to pinhole (102) and laser (101) to direct a portion of the laser beam to reference detector (109) which is electrically connected to processor (110) via line (111). When apparatus (100) is operating wool fibres in an isopropanol-wool slurry pass through cell (105) generally at a non-zero degree angle to the direction of slurry flow through cell (105) to interact with the laser beam in cell (105). Beam splitter (104) and microscope objective (106) are operatively disposed with respect to laser (101), pinhole (102) and cell (105)to produce an in focus magnified transmission image of wool fibres in cell (105) in the plane of end (107) of optical fibre bundle (108). Each of the fibres in bundle (108) is connected to a photodiode detector (112). Processor/timer (113) is connected electrically to detector (112) by line (114). Processor/timer (113) is also connected electrically to computer (115) by line (116) and to processor (110) by line (117). Detector (118) is connected electrically to processor (110) by line (119). Processor (110) is connected electrically to computer (115) by line (120). Detector (118) is operatively disposed with respect to laser (101), pinhole (102) and cell (105) to detect outgoing light.

    DISTANCE MEASURING DEVICE
    7.
    发明专利

    公开(公告)号:AU596306B2

    公开(公告)日:1990-04-26

    申请号:AU1621288

    申请日:1988-03-24

    Abstract: PCT No. PCT/AU88/00084 Sec. 371 Date Dec. 13, 1988 Sec. 102(e) Date Dec. 13, 1988 PCT Filed Mar. 24, 1988 PCT Pub. No. WO88/07657 PCT Pub. Date Oct. 6, 1988.An electro-optic distance or profile measuring device focusses an energy beam into a line (4) which intersects a surface (5) under examination at at least one point. The energy scattered by the surface (5) is imaged onto a detector (6) whereby analysis of the image intensity distribution provides a measure of the distance from a reference point to the intersection point. The focussing means may be an astigmatic confocal microscope (3) which is confocal in one dimension. The energy beam may be light, other electromagnetic radiation, particle beams or a acoustic waves.

    9.
    发明专利
    未知

    公开(公告)号:AT132252T

    公开(公告)日:1996-01-15

    申请号:AT91916427

    申请日:1991-08-30

    Abstract: PCT No. PCT/AU91/00406 Sec. 371 Date Jul. 23, 1993 Sec. 102(e) Date Jul. 23, 1993 PCT Filed Aug. 30, 1991 PCT Pub. No. WO92/04594 PCT Pub. Date Mar. 19, 1992.Interference methods and interference microscopes for measuring energy path length differences, path length between two locations or for determining refractive index are disclosed. According to one embodiment a confocal interference microscope (100) may be employed to build up an interferogram of surface (123) of object (124) as follows. A portion of the light beam from coherent laser diode (101) is coherently guided to exit (115) and focussed into a diffraction limited spot (125) intersecting surface (123) by high quality lens (122). A portion of the scattered signal light resulting from spot (125) is collected by lens (122) and confocally injected back into exit (115) to be guided back to coupler (108). A second portion of the light beam from diode (101) is coherently guided to end (121) from whence it emerges collimated. This collimated beam termed the reference beam is partially reflected by mirror (126) through end (121) and is guided back to coupler (102) where it interferes with the signal beam. The result of the interference is detected by detector (127) and fed to a computer (128). A portion of the signal light injected into fibre exit (115) is guided to detector (145) which detects the intensity level. This intensity level is fed to a computer (128) and used to control scanner (130) so as to maintain the focus of spot (125) on surface (123). A portion of the reference beam reflected by mirror (126) is injected into single mode fibre (135) and guided coherently to coupler (138) where it interferes with illuminating light guided coherently from laser diode (101) and thence detected by detector (142). The resulting signal is fed to a computer (128). While scanner (130) is moving the exits the computer (128) keeps track of their position by monitoring the interference signal from detector (142).

Patent Agency Ranking