Abstract:
A wafer-scale nano-metrology system (10) for sensing position of a nanofabrication element (16) when illuminated by a patterned optical projection defining a grid or position measuring gauge includes a frequency stabilized laser emitter (12) configured to generate a laser emission at a selected frequency, where the laser emission forms a diverging beam configured to illuminate a selected area occupied by a target fabrication object (18) having a proximal surface. An optical pattern generator (14) is illuminated by laser (12) and generates a patterned optical projection grid or gauge for projection upon the target fabrication object (18). A movable tool or nanofabrication element (16) carries an optical sensor array (50), and the sensor array detect at least a portion of the optical projection grid, and, in response to that detection, generates grid position data for use in controlling the position of the tool (16).
Abstract:
A system (120) for reflecting or redirecting incident light, microwave or sound energy includes a first substrate (144) configured to support an array of reflective elements (130) that can be angularly displaced through a range of substantially (90) degrees in response to a reflector angle control signal and a controller programmed to generate the reflector angle control signal to achieve desired incident energy, beam or wavefront redirection. The reflective elements (130) preferably comprise MEMS micro-reflector elements hingedly or movably attached to the first substrate (130) and define a reflective surface that is aimed at the source of incident light, microwave or sound energy.
Abstract:
Methods, systems, and devices are disclosed for implementing molecular sensors. In one aspect, an ion-gas sensor device includes a pre-concentration module to collect and concentrate a gas-phase chemical for analysis; a piezoelectric fan to produce an air-flow through acoustic streaming to drive the gas-phase chemical released by the pre-concentration module to one or more downstream modules; an ionizer downstream from the piezoelectric fan to ionize the gas-phase chemical; and a gas sensor downstream from the piezoelectric fan and the ionizer to detect the ionized gas-phase chemical driven by the piezoelectric fan. The piezoelectric fan can include a stack of thin-film layers that includes a thin-film piezoelectric layer. The ion-gas sensor device is made into an ultra-portable package capable of integration with mobile communication devices, such as PDA devices or smart phones.
Abstract:
A vibration transducer module for detecting a vibratory signal, comprising a base, a spring connected to the base at a first location, a mass mechanically coupled to the spring at a second location remote from the first location, and a wall configured to position a first wall electrode and a second wall electrode a selected distance from the first location, the conductive element positioned and sized to contact the first wall electrode and the second wall electrode. The mass comprises a conductive element, and an energy harvester to provide a first voltage signal. The energy harvester may comprise a piezoelectric material or be construct as a SAW device. The module may be combined with a rectifier and an oscillator to form a vibration sensor.
Abstract:
A wafer-based charged particle accelerator includes a charged particle source and at least one RF charged particle accelerator wafer sub-assembly and a power supply coupled to the at least one RF charged particle accelerator wafer sub-assembly. The wafer-based charged particle accelerator may further include a beam current-sensor. The wafer-based charged particle accelerator may further include at least a second RF charged particle accelerator wafer sub-assembly and at least one ESQ charged particle focusing wafer. Fabrication methods are disclosed for RF charged particle accelerator wafer sub-assemblies, ESQ charged particle focusing wafers, and the wafer-based charged particle accelerator.
Abstract:
A zero power sensor node includes a sensor suite including two or more different types of zero power sensors, particularly including at least two of a zero power PZT-bimorph accelerometer, a zero power PZT-bimorph rotation sensor, a zero power PZT-bimorph magnetic sensor, a zero power PZT-bimorph gyroscope, and a zero power acoustic sensor, which may be a PZT-bimorph acoustic sensor or an resonant cavity, and a near zero power-consuming, multi gate electrostatic switch. The node output can send a wake-up signal to trigger a higher power consuming device.
Abstract:
An autonomous, self -powered device includes a radioisotope-powered current impulse generator including a spring assembly comprising a cantilever, and a piezoelectric- surface acoustic wave (P-SAW) structure connected in parallel to the current impulse generator. Positive charges are accumulated on an electrically isolated 63 Ni thin film due to the continuous emission of β-particles (electrons), which are collected on the cantilever. The accumulated charge eventually pulls the cantilever into the radioisotope thin-film until electrical discharge occurs. The electrical discharge generates a transient magnetic and electrical field that can excite the RF modes of a cavity in which the electrical discharge occurs. A piezoelectric-SAW resonator is connected to the discharge assembly to control the RF frequency output. A method for generating a tuned RF signal includes inputting an energy pulse to a P-SAWresonator, exciting the resonant frequency thereof, and outputting an RF signal having a frequency tuned to the resonator frequency.
Abstract:
A system, comprising: (i) an interposer layer; (ii) a circuit layer positioned on the interposer layer and comprising a plurality of sonically-enabled pads; and (iii) an interrogator layer positioned on the circuit layer and comprising a plurality of ultrasonic transducers configured to sonically interrogate the circuit layer; wherein the sonically-enabled pads are configured to generate an electrical signal in response to sonic interrogation from the interrogator layer, if the sonically-enabled pad is functional.
Abstract:
Delay line memory device, systems and methods are disclosed. In one aspect, a delay line memory device includes a substrate; an electronic unit disposed on the substrate and operable to receive, amplify, and/or synchronize data signals into a bit stream to be transmitted as acoustic pulses carrying data stored in the delay line memory device; a first and a second piezoelectric transducer disposed on the substrate and in communication with the electronic unit, in which the first piezoelectric transducer is operable to transmit the data signals to the acoustic pulses that carry the data through the bulk of the substrate, and the second piezoelectric transducer is operable to transduce the received acoustic pulses to intermediate electrical signals containing the data, which are transferred to the electronic unit via an electrical interconnect to cause refresh of the data in the delay line memory device.