Abstract:
An optical device including an optical amplifier to amplify optical signals received through an optical input, and to supply the amplified optical signals from an optical output, and an optical filter component to compensate for variations in the gain spectrum of the optical amplifier that occur as a function of wavelength and operating temperature. The optical filter component includes a first optical filter having an athermalized transmission spectrum and a second optical filter having a transmission (or insertion loss) spectrum that varies as a function of operating temperature.
Abstract:
Optical gratings having a range of possible Bragg wavelengths can be produce d using a single phase mask by exposing the mask to a non-collimated spatially filtered beam of light. A spatial filter (30) removes high spatial frequency components from the beam, and a focusing system (36) directs the filtered be am to a phase mask (40). A rate at which the beam is focused and a spacing between the phase mask and a photo-sensitive waveguide (12) are varied to produce gratings in the waveguide having a range of possible periods.
Abstract:
Methods of controlling semiconductor lasers (10) are provided where the semiconductor laser generates an output beam that is directed towards the input face of a wavelength conversion device (20). Particular aspects of the present invention relate to alignment and/or intentional misalignment of a beam spot (15) of an output beam on an input face of a wavelength conversion device (20). Additional embodiments are disclosed and claimed.
Abstract:
The present invention relates generally to semiconductor lasers and laser scanning systems and, more particularly, to schemes for controlling wavelength in semiconductor lasers. According to one embodiment of the present invention, a method of minimizing laser wavelength variations in a semiconductor laser is provided. According to the method, one or more of the laser drive currents is configured to comprise a drive portion A and a wavelength recovery portion B. The wavelength recovery portion of the drive current comprises a recovery amplitude I R that is distinct from the drive amplitude I D and a recovery duration t R that is less than the drive duration t D . The recovery amplitute I R and duration t R are sufficient to recover carrier density distribution distorted by gain compression effects prior to recovery. Additional embodiments are disclosed and claimed.
Abstract translation:本发明一般涉及半导体激光器和激光扫描系统,更具体地,涉及用于控制半导体激光器中的波长的方案。 根据本发明的一个实施例,提供了一种使半导体激光器中的激光波长变化最小化的方法。 根据该方法,一个或多个激光驱动电流被配置为包括驱动部分A和波长恢复部分B.驱动电流的波长恢复部分包括恢复幅度I R S, 与驱动振幅I SUB D不同,恢复持续时间t R R小于驱动持续时间t D D。 恢复扩增子I R和持续时间t R N足以恢复在恢复之前由增益压缩效应失真的载流子密度分布。 公开和要求保护附加实施例。
Abstract:
Optical gratings having a range of possible Bragg wavelengths can be produced using a single phase mask by exposing the mask to a non-collimated spatially filtered beam of light. A spatial filter removes high spatial frequency components from the beam, and a focusing system directs the filtered beam to a phase mask. A rate at which the beam is focused and a spacing between the phase mask and a photo-sensitive waveguide are varied to produce gratings in the waveguide having a range of possible periods.
Abstract:
Methods and apparatus for combining, adding, and/or dropping channels in optical communication systems that utilize thin film filters without the creation of deadbands, using fiber Bragg gratings (316,322) and additional thin film optical filters, are described. According to one aspect of the invention, an optical filter (318) is used to drop a wavelength (328) range from an optical signal (312). Prior to the optical signal entering the optic al filter, one or more fiber Bragg gratings and an optical circulator (310, 324 ) are used reflects a portion of the communications spectrum which would normally lie with the deadband region of the optical filter. According to another aspect of the present invention, an optical filter (320) is used to combine a first optical signal and a second optical signal to form a combine d optical signal. Neither the first optical signal nor the second optical sign al includes channels within a deadband region of the optical filter. One or mor e fiber Bragg gratings and an optical circulator or a coupler are used to add a third optical signal to the combined optical signal. The third optical signa l includes signal wavelengths within the deadband region of the optical filter .
Abstract:
An optical waveguiding fiber has a photosensitive core and a cladding that includes a photosensitive inner cladding region adjacent the core and an out er cladding region. The inner cladding region and the outer cladding region hav e substantially equal indices of refraction. The photosensitivity of the inner cladding region is sufficient to cause a modulation of the index of refracti on of the inner cladding when exposed to ultraviolet light. In another aspect o f the invention, the optical fiber includes a grating in the core, which exten ds radially into the inner cladding region. The core and the inner cladding region of the optical fiber are doped with concentrations of Ge and B sufficient to impart photosensitivity to the inner cladding region, and to result in an index of refraction in the inner cladding region substantially equal to the index of refraction of the outer cladding region.
Abstract:
Methods of controlling semiconductor lasers are provided where the semiconductor laser generates a wavelength-modulated output beam λMOD that is directed towards the input face of a wavelength conversion device. The intensity of a wavelength-converted output λCONV of the device is monitored as the output beam of the laser is modulated and as the position of the modulated output beam λMOD on the input face of the wavelength conversion device is varied. A maximum value of the monitored intensity is correlated with optimum coordinates representing the position of the modulated output beam λMOD on the input face of the wavelength conversion device. The optical package is operated in the data projection mode by directing an intensity-modulated laser beam from the semiconductor laser to the wavelength conversion device using the optimum positional coordinates. Additional embodiments are disclosed and claimed. Laser controllers and projections systems are also provided.
Abstract:
Methods and apparatus for combining, adding, and/or dropping channels in optical communication systems that utilize thin film filters without the creation of deadbands, using fiber Bragg gratings and additional thin film optical filters, are described. According to one aspect of the invention, an optical filter is used to drop a wavelength range from an optical signal. Prior to the optical signal entering the optical filter, one or more fiber Bragg gratings and an optical circulator are used reflects a portion of the communications spectrum which would normally lie with the deadband region of the optical filter. According to another aspect of the present invention, an optical filter is used to combine a first optical signal and a second optical signal to form a combined optical signal. Neither the first optical signal nor the second optical signal includes channels within a deadband region of the optical filter. One or more fiber Bragg gratings and an optical circulator or a coupler are used to add a third optical signal to the combined optical signal. The third optical signal includes signal wavelengths within the deadband region of the optical filter.