Abstract:
A hermetically sealed glass package (100) and method (200) for manufacturing the hermetically sealed glass package (100) are described herein using an OL ED display as an example. Basically, the hermetically sealed OLED display (100) is manufactured by providing (step 202) a first substrate plate (102) and a second substrate plate (107) and depositing (step 208) a frit (106) onto the second substrate plate (107). OLEDs (104) are deposited (step 206) on the first substrate plate (102). An irradiation source (110)(e.g., laser, infrar ed light) is then used to heat (step 212) the frit (106) which melts and forms a hermetic seal (108) that connects the first substrate plate (102) to the second substrate plate (107) and also protects the OLEDs (104). The frit (10 6) is glass that was doped with at least one transition metal and possibly a CT E lowering filler such that when the irradiation source (110) heats the frit, it softens and forms a bond. This enables the frit (106) to melt and form the hermetic seal (108) while avoiding thermal damage to the OLEDs (104).
Abstract:
A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. In one embodiment, the hermetically sealed glass package is manufactured by providing a first substrate plate and a second substrate plate. The second substrate contains at least one transition metal such as iron, copper, vanadium, manganese, cobalt, nickel, chromium, and/or neodymiu m. A sensitive thin-film device that needs protection is deposited onto the fir st substrate plate. A laser is then used to heat the doped second substrate pla te in a manner that causes a portion of it to swell and form a hermetic seal th at connects the first substrate plate to the second substrate plate and also protects the thin film device. The second substrate plate is doped with at least one transition metal such that when the laser interacts with it there is an absorption of light from the laser in the second substrate plate, which leads to the formation of the hermetic seal while avoiding thermal damage to the thin-film device. Another embodiment of the hermetically sealed glass package and a method for manufacturing that hermetically sealed glass packag e are also described herein.
Abstract:
Use of ultrashort, focused pulses to alter a detectable optical property in a specific region in a structure allows lower energy to be used in fabrication of a three-dimensional, periodic array of altered regions in a material. These properties may be, for example, an index of refraction, absorption or scattering. The typical spacing between altered regions may be larger than a wavelength of interest, to create diffractive optical elements, or may be roughly the same as a wavelength of interest, to create photonic crystal elements. The photonic crystal may have a photonic band gap, i.e., a frequency range in which no modes may propagate, or may simply have altered dispersion properties but no gap, as in a photonic crystal superprism.
Abstract:
A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package particularly using an OLED is described herein. In one embodiment, the hermetically sealed glass package is manufactured by providing a first substrate plate and a second substrate plate. The second substrate contains at least one transition or rare earth metal. A sensitive thin-film device that needs protection is deposited onto the first substrate plate. A laser is then used to heat the doped second substrate plate such that a portion of it swells and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the thin film device. The second substrate plate is doped with at least one transition metal such that when the laser interacts with it there is an absorption of light from the laser in the second substrate plate.
Abstract:
A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. In one embodiment, the hermetically sealed glass package is manufactured by providing a first substrate plate and a second substrate plate. The second substrate contains at least one transition metal such as iron, copper, vanadium, manganese, cobalt, nickel, chromium, and/or neodymium. A sensitive thin-film device that needs protection is deposited onto the first substrate plate. A laser is then used to heat the doped second substrate plate in a manner that causes a portion of it to swell and form a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the thin film device. The second substrate plate is doped with at least one transition metal such that when the laser interacts with it there is an absorption of light from the laser in the second substrate plate, which leads to the formation of the hermetic seal while avoiding thermal damage to the thin-film device. Another embodiment of the hermetically sealed glass package and a method for manufacturing that hermetically sealed glass package are also described herein.
Abstract:
A hermetically sealed glass package (100) and method (200) for manufacturing the hermetically sealed glass package (100) are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display (100) is manufactured by providing (step 202) a first substrate plate (102) and a second substrate plate (107) and depositing (step 208) a frit (106) onto the second substrate plate (107). OLEDs (104) are deposited (step 206) on the first substrate plate (102). An irradiation source (110)(e.g., laser, infrared light) is then used to heat (step 212) the frit (106) which melts and forms a hermetic seal (108) that connects the first substrate plate (102) to the second substrate plate (107) and also protects the OLEDs (104). The frit (106) is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source (110) heats the frit, it softens and forms a bond. This enables the frit (106) to melt and form the hermetic seal (108) while avoiding thermal damage to the OLEDs (104).