Abstract:
A microstructured optical fiber is described. The microstructured optical fiber comprises an inner region and an outer region. The inner region includes an inner material and a plurality of holes formed in the inner material. The outer region surrounds the inner region, and includes an outer material. The softening point temperature of the inner material is greater than the softening point temperature of the outer material by at least about 50 °C. Microstructured optical fiber preforms and methods for making the microstructured optical fibers are also described. The microstructured optical fiber may be made to have substantially undistorted holes in the inner region.
Abstract:
An optical waveguide environmental sensor is provided that is capable of detecting a target gas or liquid in the ambient environment in an advantageously short period of time. The waveguide is preferably in the form of an optical fiber having a cladding that contains a photonic band gap structure which in turn envelopes a light conducting, hollow core portion. The cladding further includes at least one elongated side opening that preferably extends the entire length of the fiber and exposes said hollow core portion to the ambient environment, which provides broad and nearly immediate access of the core portion to gases and liquids in the ambient environment, thereby minimizing sensor response time. The ambient gases or liquids filling the hollow core portion and elongated opening function as a ridge and slab, respectively, of an optical ridge waveguide that effectively supports at least one bound optical mode.
Abstract:
The present invention provides methods of generating short wavelength radiation, methods of transporting short wavelength radiation, and apparati used in these methods. One embodiment of the invention provides a method of transporting short wavelength radiation using a photonic band gap fiber. Another embodiment of the invention provides a method of transporting short wavelength radiation using a bundle of photonic band gap fibers. Another embodiment of the invention provides a method of generating ultraviolet radiation using high harmonic generation by pumping a noble gas-filled photonic band gap fiber with a pulsed laser source.
Abstract:
Disclosed is a multiple core optical waveguide fiber having a negative total dispersion and negative total dispersion slope tailored to compensate the total dispersion of a typical high performance transmission fiber over a selected wavelength range. Also disclosed is a method of making the multiple core optical waveguide fiber and a compensated link using the multiple core fiber. The simplicity of the refractive index profiles of the constituent cores provides ease of manufacture of the multiple core structure.
Abstract:
A light source includes a first waveguide. The first waveguide includes a light emitting material having a first index of refraction and at least one layer is disposed over the light emitting material. The at least one layer has a second index of refraction and the first index of refraction is greater than the second index of refraction. The light source also includes a second waveguide, which is coupled to the first waveguide. The light emitting device also includes a light extraction structure.
Abstract:
The present invention relates generally to wavelength conversion devices and laser projection systems incorporating the same. According to one embodiment of the present invention, wavelength conversion devices are provided without limitation of their field of use to laser projection systems. For example, the wavelength conversion device may comprise an axial waveguide portion and a pair of lateral planar waveguide portions confined between a pair of relatively low index cladding layers. The effective index of refraction in the axial waveguide portion of the waveguide region and the effective index of refraction in the lateral planar waveguide portions of the waveguide region are established such that the relatively low intensity laterally distributed parasitic light is characterized by a scattering angle ? that is at least as large as the beam divergence angle of the relatively high intensity light propagating in the axial waveguide portion.
Abstract:
Disclosed is a multiple core (10) optical waveguide fiber (3) having a negative total dispersion and a negative total dispersion slope tailored to compensate the total dispersion of a typical high performance transmission fiber over a selected wavelength range. Also disclosed is a method of making the multiple core optical waveguide fiber and a compensated link using the multiple core fiber. The simplicity of the refractive index profiles of the constituent cores provides ease of manufacture of the multiple core structure.
Abstract:
Disclosed is a photonic band-gap crystal waveguide having the physical dimension of the photonic crystal lattice and the size of the defect selected to provide for optimum mode power confinement to the defect. The defect has a boundary which has a characteristic numerical value associated with it. The ratio of this numerical value to the pitch of the photonic crystal is selected to avoid surface modes found to exist in certain configurations of the photonic band-gap crystal waveguide. Embodiments in accord with the invention having circular and hexagonal defect cross sections are disclosed and described. A method of making the photonic band-gap crystal waveguide is also disclosed and described.
Abstract:
Disclosed is a photonic band-gap crystal waveguide having the physical dimension of the photonic crystal lattice and the size of the defect (12, 20) selected to provide for optimum mode power confinement to the defect. The defect (12, 20) has a boundary which has a characteristic numerical value associated with it. The ratio of this numerical value to the pitch (4) of the photonic crystal is selected to avoid surface modes found to exist in certain configurations of the photonic band-gap crystal waveguide. Embodiments in accord with the invention having circular and hexagonal defect cross sections are disclosed and described. A method of making the photonic band-gap crystal waveguide is also disclosed and described.
Abstract:
A microstructured optical fiber is described. The microstructured optical fiber comprises an inner region and an outer region. The inner region includes an inner material and a plurality of holes formed in the inner material. The outer region surrounds the inner region, and includes an outer material. The softening point temperature of the inner material is greater than the softening point temperature of the outer material by at least about 50 °C. Microstructured optical fiber preforms and methods for making the microstructured optical fibers are also described. The microstructured optical fiber may be made to have substantially undistorted holes in the inner region.