Abstract:
A method of improving efficiency of an electrosurgical generator is presented, the method including controlling an output of an electrosurgical generator by converting a direct current (DC) to an alternating current (AC) using an inverter, and sensing a current and a voltage at an output of the inverter. The method further includes the steps of determining a power level based on the sensed voltage and the sensed current, determining an efficiency of the electrosurgical generator, and inserting a predetermined integer number of off cycles when the efficiency of the electrosurgical generator reaches a threshold power efficiency.
Abstract:
An electrosurgical generator includes a gain-compensated full bridge topology. Gain nonlinearity is corrected by applying impedance and phase correction factors to a control loop to achieve a linear gain structure. In embodiments, gain compensation is performed by comparing an RF setpoint signal with a calculated output signal to generate a first error signal. An impedance correction factor is applied to the first error signal to generate a second error signal. The second error signal is processed by a proportional-integral-derivative controller to generate a phase control signal. A phase control correction factor is applied to the phase control signal to generate a corrected pulse width modulation driving signal, which is used to generate PWM driving signals for a full-bridge inverter. One or more sensors provide feedback for comparison with the RF setpoint.
Abstract:
An electrosurgical generator is presented including a radio frequency (RF) amplifier coupled to an electrical energy source and configured to generate electrosurgical energy, the RF amplifier including an inverter configured to convert a direct current (DC) to an alternating current (AC), and a plurality of sensors configured to sense voltage and current of the generated electrosurgical energy. The electrosurgical generator further includes a controller coupled to the RF amplifier and the plurality of sensors. The electrosurgical may be further configured to determine a power level based on the sensed voltage and the sensed current, determine an efficiency of the electrosurgical generator, and insert a predetermined integer number of off cycles when the efficiency of the electrosurgical generator reaches a threshold power efficiency.
Abstract:
A controller for an electrosurgical generator includes an RF inverter, a signal processor, a software compensator, a hardware compensator, and an RF inverter controller. The RF inverter generates an electrosurgical waveform and the signal processor outputs a measured value of at least one of a voltage, a current, or power of the electrosurgical waveform. The software compensator generates a desired value for at least one of the voltage, the current, or the power of the electrosurgical waveform, and the hardware compensator generates a phase shift based on the measured value and the desired value. The RF inverter controller generates a pulse-width modulation (PWM) signal based on the phase shift to control the RF inverter.
Abstract:
An electrosurgical generator and related systems and methods using a gain-compensated full bridge topology. Gain nonlinearity is corrected by applying impedance and phase correction factors to a control loop to achieve a linear gain structure. In embodiments, gain compensation is performed by comparing an RF setpoint signal with a calculated output signal to generate a first error signal. An impedance correction factor is applied to the first error signal to generate a second error signal. The second error signal is processed by a proportional-integral-derivative controller to generate a phase control signal. A phase control correction factor is applied to the phase control signal to generate a corrected pulse width modulation driving signal, which is used to generate PWM driving signals for a full-bridge inverter. One or more sensors provide feedback for comparison with the RF setpoint.