Abstract:
The present disclosure is directed to an electrosurgical generator an H-bridge and a tank driven by the H-bridge. The tank includes a transformer having a primary winding and a secondary winding. The secondary winding includes a first coil and a second coil. In the electrosurgical generator, a capacitor is connected in series between the first coil and the second coil.
Abstract:
An electrosurgical system includes an electrosurgical generator, a power source configured to deliver power to at least one load connected to the generator, a master configured to generate an initial pulse, the initial pulse cooperating with a first floating power supply configured to create an electrical connection between at least one first load and the power source, and a plurality of slaves connected in series to the master, wherein a first slave is configured to generate a subsequent pulse based on the initial pulse, the subsequent pulse cooperating with a second floating power supply configured to create an electrical connection between at least one second load and the power source, the subsequent pulse configured to cause an ensuing slave to generate an additional pulse, the additional pulse cooperating with a corresponding floating power supply configured to create an electrical connection between at least one additional load and the power source.
Abstract:
An ultrasonic motion generator includes a non-resonant inverter, an ultrasonic transducer, and a comparator. The non-resonant inverter inverts direct current (DC) to alternating current (AC) having a first frequency. The ultrasonic transducer is electrically coupled with the non-resonant inverter and generates an ultrasonic motion based on the inverted AC. The comparator automatically detects a deviation of the first frequency from a resonant frequency of the ultrasonic transducer based on motion current passing through the ultrasonic transducer and generates an output signal based on the deviation to drive the non-resonant inverter.
Abstract:
A current sensor includes a Rogowski coil disposed on a flexible printed circuit board with at least one active lead passing through the Rogowski coil.
Abstract:
The present disclosure is directed to an electrosurgical generator including a tank configured to output energy and an H-bridge configured to drive the tank. The generator also includes a choke. The choke impedes a common mode current generated by the H-bridge and provides a leakage inductance for the tank.
Abstract:
A method of improving efficiency of an electrosurgical generator is presented, the method including controlling an output of an electrosurgical generator by converting a direct current (DC) to an alternating current (AC) using an inverter, and sensing a current and a voltage at an output of the inverter. The method further includes the steps of determining a power level based on the sensed voltage and the sensed current, determining an efficiency of the electrosurgical generator, and inserting a predetermined integer number of off cycles when the efficiency of the electrosurgical generator reaches a threshold power efficiency.
Abstract:
The present disclosure is directed to an electrosurgical generator including a resonant inverter having an H-bridge and a tank. A sensor array measures at least one property of the tank. A pulse width modulation (PWM) controller outputs a first PWM timing signal and a second PWM timing signal to the H-bridge. The PWM controller controls a dead-time between the first PWM timing signal and the second PWM timing signal based on the at least one property measured by the sensor array.
Abstract:
In accordance with one aspect of the present disclosure, a current sensor configured to measure an AC current of a first conductor includes an outer coil having a first portion and a second portion. Each of the first and second portions are disposed about the first conductor passing through a center of the outer coil. The current sensor further includes an inner conductor disposed within the first and second portions of the outer coil and connected to each of the first and second portions of the outer coil.
Abstract:
An electrosurgical generator is disclosed. The electrosurgical generator includes: a power supply configured to output DC power; an inverter coupled to the power supply, the inverter including a plurality of switching elements; and a controller coupled to the inverter and configured to signal the inverter to simultaneously generate based on the DC power a radio frequency heating waveform and an electroporation waveform.
Abstract:
An ultrasonic transducer and generator assembly and method for controlling the assembly are disclosed. The method includes sensing a current signal and a voltage signal at the transducer, differentiating the voltage signal, multiplying the differentiated voltage signal by a bulk capacitance value to determine a bulk capacitance current signal, determining the difference between the current signal and the bulk capacitance current signal to determine a motional current signal corresponding to mechanical motion of the transducer, determining an updated bulk capacitance value based on the determined motional current signal and the bulk capacitance current signal, generating a transducer signal based on the motional current signal, and driving the transducer with the transducer signal. The method may further include filtering the difference between the current signal and the bulk capacitance current signal using a band-pass filter. The updated bulk capacitance may be determined using a least mean squares adaptive filter.