Abstract:
Embodiments disclosed herein generally include using a large number of small MEMS devices to replace the function of an individual larger MEMS device or digital variable capacitor. The large number of smaller MEMS devices perform the same function as the larger device, but because of the smaller size, they can be encapsulated in a cavity using complementary metal oxide semiconductor (CMOS) compatible processes. Signal averaging over a large number of the smaller devices allows the accuracy of the array of smaller devices to be equivalent to the larger device. The process is exemplified by considering the use of a MEMS based accelerometer switch array with an integrated analog to digital conversion of the inertial response. The process is also exemplified by considering the use of a MEMS based device structure where the MEMS devices operate in parallel as a digital variable capacitor.
Abstract:
The present disclosure generally relates to a MEMS DVC utilizing one or more MIM capacitors located in the anchor of the DVC and an Ohmic contact located on the RF-electrode. The MIM capacitor in combination with the ohmic MEMS device ensures that a stable capacitance for the MEMS DVC is achieved with applied RF power.
Abstract:
The present invention generally relates to an architecture for isolating an RF MEMS device from a substrate and driving circuit, series and shunt DVC die architectures, and smaller MEMS arrays for high frequency communications. The semiconductor device has one or more cells with a plurality of MEMS devices therein. The MEMS device operates by applying an electrical bias to either a pull-up electrode or a pull-down electrode to move a switching element of the MEMS device between a first position spaced a first distance from an RF electrode and a second position spaced a second distance different than the first distance from the RF electrode. The pull-up and/or pull-off electrode may be coupled to a resistor to isolate the MEMS device from the substrate.
Abstract:
The present invention generally relates to small antennas suitable for mobile devices operating in the high frequency and radio frequency bands in the range 100MHz to 5GHz. The antennas may be coupled to a DVC such as a MEMS DVC. The antenna may be coupled to a printed circuit board disposed inside of the mobile device, such as a mobile phone or smart phone.
Abstract:
The present invention generally relates to techniques and structures that permit a CSP RF-MEMS to be assembled without the need for a solder mask. By having a mesa above the substrate, and having the chip soldered to traces on top of the mesa, the traces do not need a solder mask thereover outside of the mesa. If any solder mask is present, the solder mask is present only on top of the mesa and not on the sidewalls of the mesa or on the substrate.
Abstract:
The present invention generally relates to a MEMS device having a plurality of cantilevers that are coupled together in an anchor region and/or by legs that are coupled in a center area of the cantilever. The legs ensure that each cantilever can move/release from above the RF electrode at the same voltage. The anchor region coupling matches the mechanical stiffness in all sections of the cantilever so that all of the cantilevers move together.
Abstract:
The present disclosure generally relates to any device capable of wireless communication, such as a mobile telephone or wearable device, having one or more antennas. By applying a variable reactance (capacitive or inductive component) antenna aperture tuner within a simple, scalar antenna aperture tuning system, the maintenance of a constant antenna resonant frequency in the presence of environmental changes or head/hand effects is obtained. The variable reactance is used to adjust the resonant frequency of the antenna to stay at the desired target frequency in response to external variables that would otherwise shift the resonance away from the operating frequency of the device. Adjusting the resonant frequency of the antenna in response to externally induced changes maintains the radiating efficiency of the antenna and simultaneously avoids impedance mismatch between the antenna and the respective transmit/receive path in the radio, thereby minimizing transmission losses.
Abstract:
The present invention generally relates to a MEMS DVC utilizing one or more MIM capacitors. The MIM capacitor may be disposed between the MEMS device and the RF pad or the MIM capacitor may be integrated into the MEMS device itself. The MIM capacitor ensures that a low resistance for the MEMS DVC is achieved.
Abstract:
The present invention generally relates to cellular phones having multiple antennas. The invention relates to how two antennas in a diversity or MIMO antenna system interact through mutual coupling. The mutual coupling is due to proximity of the two antennas, their antenna pattern and efficiency. The performance of the system can be optimized by adjusting the mutual coupling between the antennas. The primary and secondary antennas can be "tuned" and "de-tuned" respectively to enhance system performance. In this invention, the primary and secondary antennas are tuned independently using MEMS capacitor configured in the antenna aperture for frequency tuning.
Abstract:
In a MEMS device, the manner in which the membrane lands over the RF electrode can affect device performance. Bumps or stoppers placed over the RF electrode can be used to control the landing of the membrane and thus, the capacitance of the MEMS device. The shape and location of the bumps or stoppers can be tailored to ensure proper landing of the membrane, even when over-voltage is applied. Additionally, bumps or stoppers may be applied on the membrane itself to control the landing of the membrane on the roof or top electrode of the MEMS device.