Abstract:
The present invention generally relates to a mechanism for testing a MEMS hysteresis. A power management circuit may be coupled to the electrodes that cause the movable plate that is disposed between the electrodes in a MEMS device to move. The power management circuit may utilize a charge pump, a comparator and a resistor ladder.
Abstract:
Embodiments disclosed herein generally include using a large number of small MEMS devices to replace the function of an individual larger MEMS device or digital variable capacitor. The large number of smaller MEMS devices perform the same function as the larger device, but because of the smaller size, they can be encapsulated in a cavity using complementary metal oxide semiconductor (CMOS) compatible processes. Signal averaging over a large number of the smaller devices allows the accuracy of the array of smaller devices to be equivalent to the larger device. The process is exemplified by considering the use of a MEMS based accelerometer switch array with an integrated analog to digital conversion of the inertial response. The process is also exemplified by considering the use of a MEMS based device structure where the MEMS devices operate in parallel as a digital variable capacitor.
Abstract:
The present invention generally relates to a mechanism for testing a MEMS hysteresis. A power management circuit may be coupled to the electrodes that cause the movable plate that is disposed between the electrodes in a MEMS device to move. The power management circuit may utilize a charge pump, a comparator and a resistor ladder.
Abstract:
The present invention generally relates to methods for increasing the lifetime of MEMS devices by reducing the number of movements of a switching element in the MEMS device. Rather than returning to a ground state between cycles, the switching element can remain in the same state if both cycles necessitate the same capacitance. For example, if in both a first and second cycle, the switching element of the MEMS device is in a state of high capacitance the switching element can remain in place between the first and second cycle rather than move to the ground state. Even if the polarity of the capacitance is different in successive cycles, the switching element can remain in place and the polarity can be switched. Because the switching element remains in place between cycles, the switching element, while having the same finite number of movements, should have a longer lifetime.
Abstract:
The present invention generally relates to a MEMS device and a method of manufacture thereof. The RF electrode, and hence, the dielectric layer thereover, has a curved upper surface that substantially matches the contact area of the bottom surface of the movable plate. As such, the movable plate is able to have good contact with the dielectric layer and thus, good capacitance is achieved.
Abstract:
The present invention generally relates to a method of operating a MEMS DVC while minimizing impact of the MEMS device on contact surfaces. By reducing the drive voltage upon the pull-in movement of the MEMS device, the acceleration of the MEMS device towards the contact surface is reduced and thus, the impact velocity is reduced and less damage of the MEMS DVC device occurs.
Abstract:
In a MEMS device, the manner in which the membrane lands over the RF electrode can affect device performance. Bumps or stoppers placed over the RF electrode can be used to control the landing of the membrane and thus, the capacitance of the MEMS device. The shape and location of the bumps or stoppers can be tailored to ensure proper landing of the membrane, even when over-voltage is applied. Additionally, bumps or stoppers may be applied on the membrane itself to control the landing of the membrane on the roof or top electrode of the MEMS device.
Abstract:
Embodiments of the present invention generally relate to a MEMS device that is anchored using the layer that is deposited to form the cavity sealing layer and/or with the layer that is deposited to form the pull-off electrode. The switching element of the MEMS device will have a flexible or movable portion and will also have a fixed or anchor portion that is electrically coupled to ground. The layer that is used to seal the cavity in which the switching element is disposed can also be coupled to the fixed or anchor portion of the switching element to anchor the fixed or anchor portion within the cavity. Additionally, the layer that is used to form one of the electrodes may be used to provide additional leverage for anchoring the fixed or anchor portion within the cavity. In either situation, the movement of the flexible or movable portion is not hindered.
Abstract:
The present invention generally relates to methods for producing MEMS or NEMS devices and the devices themselves. A thin layer of a material having a lower recombination coefficient as compared to the cantilever structure may be deposited over the cantilever structure, the RF electrode and the pull-off electrode. The thin layer permits the etching gas introduced to the cavity to decrease the overall etchant recombination rate within the cavity and thus, increase the etching rate of the sacrificial material within the cavity. The etchant itself may be introduced through an opening in the encapsulating layer that is linearly aligned with the anchor portion of the cantilever structure so that the topmost layer of sacrificial material is etched first. Thereafter, sealing material may seal the cavity and extend into the cavity all the way to the anchor portion to provide additional strength to the anchor portion.
Abstract:
The present invention generally relates to the formation of a micro-electromechanical system (MEMS) cantilever switch in a complementary metal oxide semiconductor (CMOS) back end of the line (BEOL) process. The cantilever switch is formed in electrical communication with a lower electrode in the structure. The lower electrode may be either blanket deposited and patterned or simply deposited in vias or trenches of the underlying structure. The excess material used for the lower electrode is then planarized by chemical mechanical polishing or planarization (CMP). The cantilever switch is then formed over the planarized lower electrode.