Abstract:
An optical modulator may include a lower waveguide, an upper waveguide, and a dielectric layer disposed therebetween. When a voltage potential is created between the lower and upper waveguides, these layers form a silicon-insulator-silicon capacitor (also referred to as SISCAP) guide that provides efficient, high-speed optical modulation of an optical signal passing through the modulator. In one embodiment, at least one of the waveguides includes a respective ridge portion aligned at a charge modulation region which may aid in confining the optical mode laterally (e.g., in the width direction) in the optical modulator. In another embodiment, ridge portions may be formed on both the lower and the upper waveguides. These ridge portions may be aligned in a vertical direction (e.g., a thickness direction) so that ridges overlap which may further improve optical efficiency by centering an optical mode in the charge modulation region.
Abstract:
Embodiments include a method and associated apparatuses for phaseshifting an optical signal. The method comprises receiving, at a first end of an optical waveguide formed in a semiconductor layer and extending along a first axis, an optical signal having a first phase. The method further comprises transmitting, at a second end of the optical waveguide opposite the first end, a modified optical signal having a second phase different than the first phase. Transmitting a modified optical signal comprises applying a voltage signal between a first contact region and a second contact region formed in the semiconductor layer apart from the first axis. Applying a voltage signal causes an electrical current to be conducted along a dimension of the optical waveguide. The electrical current causes resistive heating of the optical waveguide and a desired phase shift between the first phase and the second phase.
Abstract:
An optical modulator may include a lower waveguide, an upper waveguide, and a dielectric layer disposed therebetween. When a voltage potential is created between the lower and upper waveguides, these layers form a silicon-insulator-silicon capacitor (also referred to as SISCAP) guide that provides efficient, high-speed optical modulation of an optical signal passing through the modulator. In one embodiment, at least one of the waveguides includes a respective ridge portion aligned at a charge modulation region which may aid in confining the optical mode laterally (e.g., in the width direction) in the optical modulator. In another embodiment, ridge portions may be formed on both the lower and the upper waveguides. These ridge portions may be aligned in a vertical direction (e.g., a thickness direction) so that ridges overlap which may further improve optical efficiency by centering an optical mode in the charge modulation region.