Abstract:
A method for locating markers in an image captured by a mobile device moving about an operating space. The method includes preprocessing an image to generate a set of image data, locating fixed features of markers by tracing edges of the fixed features, and extracting variable data payloads of each of the markers associated with the located fixed features. The fixed features of each of the markers may include a pair of parallel lines extending along opposite sides of a data area containing the variable data payload, and each of the lines extends a distance beyond each exposed end of the data area to avoid missing data when markers are not arranged orthogonally to the scan direction. The preprocessing involves rotating or skewing the image to provide rotated or skewed versions of the image to facilitate locating markers regardless of their angular orientation in the image.
Abstract:
A system for performing an aerial display. The system includes a plurality of UAVs each including a propulsion device and a display payload, and the system includes a ground station system with a processor executing a fleet manager module and memory storing a different flight plan and a set of display controls for the UAVs. Then, wherein, during a display time period, the UAVs concurrently execute the flight plans through operation of the propulsion devices and operate the display payloads based on the display controls. The display payloads each include a lighting assembly and a light controller. The output light is one of a two or more colored light streams, and each of the display payloads further may include a light diffuser with the output light being directed onto a surface of the light diffuser. The light diffuser may include a light diffusing screen extending about the lighting assembly.
Abstract:
A system for flock-based control of a plurality of unmanned aerial vehicles (UAVs). The system includes UAVs each including a processor executing a local control module and memory accessible by the processor for use by the local control module. The system includes a ground station system with a processor executing a fleet manager module and with memory storing a different flight plan for each of the UAVs. The flight plans are stored on the UAVs, and, during flight operations, each of the local control modules independently controls the corresponding UAV to execute its flight plan without ongoing control from the fleet manager module. The fleet manager module is operable to initiate flight operations by concurrently triggering initiation of the flight plans by the multiple UAVs. Further, the local control modules monitor front and back and communication channels and, when a channel is lost, operate the UAV in a safe mode.
Abstract:
A system for flock-based control of a plurality of unmanned aerial vehicles (UAVs). The system includes UAVs each including a processor executing a local control module and memory accessible by the processor for use by the local control module. The system includes a ground station system with a processor executing a fleet manager module and with memory storing a different flight plan for each of the UAVs. The flight plans are stored on the UAVs, and, during flight operations, each of the local control modules independently controls the corresponding UAV to execute its flight plan without ongoing control from the fleet manager module. The fleet manager module is operable to initiate flight operations by concurrently triggering initiation of the flight plans by the multiple UAVs. Further, the local control modules monitor front and back and communication channels and, when a channel is lost, operate the UAV in a safe mode.
Abstract:
A system for flock-based control of a plurality of unmanned aerial vehicles (UAVs). The system includes UAVs each including a processor executing a local control module and memory accessible by the processor for use by the local control module. The system includes a ground station system with a processor executing a fleet manager module and with memory storing a different flight plan for each of the UAVs. The flight plans are stored on the UAVs, and, during flight operations, each of the local control modules independently controls the corresponding UAV to execute its flight plan without ongoing control from the fleet manager module. The fleet manager module is operable to initiate flight operations by concurrently triggering initiation of the flight plans by the multiple UAVs. Further, the local control modules monitor front and back end communication channels and, when a channel is lost, operate the UAV in a safe mode.
Abstract:
A system for performing an aerial display. The system includes a plurality of unmanned aerial vehicles (UAVs) and a ground control system with a processor executing a fleet manager module and with memory storing a different flight plan for each of the UAVs. The system further includes a marionette with a body and articulatable appendages attached to the body. The body and appendages are supported with tether lines extending between the marionette and the UAVs. Then, during a display time period, the UAVs concurrently execute the flight plans to position and articulate the marionette within a display air space. In some embodiments, the UAVs each is a multicopter, and each of the multicopters includes a local controller operating to move the multicopter through a series of way points defined by the flight plan associated with the multicopter.
Abstract:
A system for performing an aerial display. The system includes a plurality of UAVs each including a propulsion device and a display payload, and the system includes a ground station system with a processor executing a fleet manager module and memory storing a different flight plan and a set of display controls for the UAVs. Then, wherein, during a display time period, the UAVs concurrently execute the flight plans through operation of the propulsion devices and operate the display payloads based on the display controls. The display payloads each include a lighting assembly and a light controller. The output light is one of a two or more colored light streams, and each of the display payloads further may include a light diffuser with the output light being directed onto a surface of the light diffuser. The light diffuser may include a light diffusing screen extending about the lighting assembly.
Abstract:
A system for performing an aerial display. The system includes a plurality of unmanned aerial vehicles (UAVs) and a ground control system with a processor executing a fleet manager module and with memory storing a different flight plan for each of the UAVs. The system further includes a marionette with a body and articulatable appendages attached to the body. The body and appendages are supported with tether lines extending between the marionette and the UAVs. Then, during a display time period, the UAVs concurrently execute the flight plans to position and articulate the marionette within a display air space. In some embodiments, the UAVs each is a multicopter, and each of the multicopters includes a local controller operating to move the multicopter through a series of way points defined by the flight plan associated with the multicopter.
Abstract:
A system for flock-based control of a plurality of unmanned aerial vehicles (UAVs). The system includes UAVs each including a processor executing a local control module and memory accessible by the processor for use by the local control module. The system includes a ground station system with a processor executing a fleet manager module and with memory storing a different flight plan for each of the UAVs. The flight plans are stored on the UAVs, and, during flight operations, each of the local control modules independently controls the corresponding UAV to execute its flight plan without ongoing control from the fleet manager module. The fleet manager module is operable to initiate flight operations by concurrently triggering initiation of the flight plans by the multiple UAVs. Further, the local control modules monitor front and back end communication channels and, when a channel is lost, operate the UAV in a safe mode.
Abstract:
A system for performing an aerial display. The system includes a plurality of UAVs each including a propulsion device and a display payload, and the system includes a ground station system with a processor executing a fleet manager module and memory storing a different flight plan and a set of display controls for the UAVs. Then, wherein, during a display time period, the UAVs concurrently execute the flight plans through operation of the propulsion devices and operate the display payloads based on the display controls. The display payloads each include a lighting assembly and a light controller. The output light is one of a two or more colored light streams, and each of the display payloads further may include a light diffuser with the output light being directed onto a surface of the light diffuser. The light diffuser may include a light diffusing screen extending about the lighting assembly.