Abstract:
A process for preparing a microcapillary carbon molecular sieve membrane may include extruding a polyvinylidene chloride polymer to a thickness from 10 μm to 1,000 μm to form an extruded polymeric microcapillary film, wherein the extruded polymeric microcapillary film comprises a first end, a second end, and one or more microcapillaries extending from the first end to the second end; pre-treating the extruded polymeric microcapillary film at a temperature from 100 °C to 200 °C for a time from 1 hour to 48 hours to form a pre-treated polymeric microcapillary film; and pyrolizing the pre-treated polymeric microcapillary film at a temperature from 200 °C to 1,500 °C for a time from 15 minutes to 5 hours to form the microcapillary carbon molecular sieve membrane.
Abstract:
A carbon molecular sieve (CMS) membrane may advantageously be made by pyrolyzing a membrane precursor composition comprised of a carbon forming polymer (e.g., polyimide) blended with a polyvinylidene chloride copolymer (PVDC), the polyvinylidene chloride copolymer being the reaction product of at least 60% to 97% by weight of vinylidene chloride and at least one other comonomer and the carbon forming polymer to polyvinylidene chloride copolymer has a weight ratio of greater than 1 to 99. The membrane precursor composition may be formed by dissolving the carbon forming polymer and PVDC in a solvent to form a dope solution. The dope solution may be shaped, for example, into an asymmetric hollow fiber. The asymmetric hollow fiber may be heated to a temperature to dehydrochorinate the PVDC and then subsequently heated in a non-oxidizing atmosphere to carbonize the polymers of the shaped membrane to form the CMS membrane.
Abstract:
A supported carbon molecular sieve (CMS) membrane is made by contacting a film of a carbon forming polymer on a polymer textile to form a laminate. The laminate is then heated to a temperature for a time under an atmosphere sufficient to carbonize the film and polymer textile to form the supported CMS membrane. The supported CMS membrane formed is a laminate having a carbon separating layer graphitically bonded to a carbon textile, wherein the carbon separating layer is a continuous film. The supported CMS membranes are particularly useful for separating gases such as olefins from their corresponding paraffins.
Abstract:
A novel microporous carbon molecular sieve may be used as the basis for carbon adsorbent pellets that have discrete areas of carbonized binder and of carbonized precursor, macropores having an average pore diameter greater than or equal to 1 micrometer and a total macroporosity of at least 30 percent, both as measured by mercury porosimetry, and micropores that are capable of selectively admitting a C2-C3 alkene and excluding a C2-C3 alkane, and a total microporosity ranging from 10 percent to 30 percent. The pellets may be prepared by pyrolyzing a pellet structure comprising a carbon forming, non-melting binder and a non-porous gel type sulfonated polystyrene precursor at a temperature ranging from 500 °C to 1000 °C, under an inert atmosphere and other conditions suitable to form the described pellets. The pellets are particularly useful in pressure swing and temperature swing adsorption processes to separate C2-C3 alkane/alkene mixtures.
Abstract:
A method of forming a carbon molecular sieve membrane includes dissolving a halogenated precursor polymer in a solvent, thereby forming a dissolved halogenated precursor polymer. Homogeneously dehydrohalogenating the dissolved halogenated precursor polymer with an organic amine base to form a partially dehydrohalogenated polymer. Forming a thin film from the partially dehydrohalogenated polymer. Pyrolyzing the thin film to form the carbon molecular sieve membrane.
Abstract:
Methods for forming a carbon molecular sieve includes loading polymer fibers into a mold and heating the mold containing the polymer fibers to a temperature in a range from 50 °C to 350 °C to form a polymer monolith. The polymer monolith is then pyrolized by heating to a temperature in a range from 500 °C to 1700 °C. A carbon molecular sieve monolith includes a first end and a second end opposite the first end, and carbon molecular sieve fibers aligned in parallel from the first end of the carbon molecular sieve monolith to the second end of the carbon molecular sieve monolith. Channels extend from the first end of the carbon molecular sieve monolith to the second end of the carbon molecular sieve monolith, and outer surfaces of the carbon molecular sieve fibers are joined. The carbon molecular sieve monolith has a cell density of greater than 500 cells per square inch.
Abstract:
The present invention appreciates that compounds comprising nitrogen-containing moieties that are at least divalent (e.g., urea, urethane, amide, etc.) can be reacted with azides using at least radiation energy to initiate the reaction between at least a portion of the compounds and the azides to form membranes that have surprisingly high selectivities for acid gases relative to nonpolar gases such as hydrocarbons. The membranes are also resistant to CO 2 plasticization and have high acid gas flux characteristics. The resultant membranes can be extremely thin (e.g., 10 micrometers or less), which promotes high permeability for the acid gas and can translate into high productivity on a scaled-up, industrial level.
Abstract:
A carbon composition used for preparing a catalyst support structure including an admixture of: (a) a mesoporous material having mesoporous particles; and (b) a macro-molecule carbon forming binder; a process for producing the carbon composition; a carbon support structure; a process for producing the carbon support structure; a multi-metallic catalyst including (A) an annealed pyrolyzed carbon structure having an enhanced mesoporosity and mesopore size; and (B) at least two or more metallic particles disposed throughout the mesoporosity of the annealed pyrolyzed carbon structure; and a process for producing the multi-metallic catalyst.
Abstract:
An asymmetric polyvinylidene chloride copolymer membrane is made by a method using a dope solution comprised of a polyvinylidene chloride copolymer and a solvent that solubilizes the polyvinylidene chloride copolymer that is shaped to form an initial shaped membrane. The initial shaped membrane is then quenched in a liquid comprised of a solvent that is miscible with the solvent that solubilizes the polyvinylidene chloride copolymer but is immiscible with the polyvinylidene chloride copolymer to form a wet asymmetric polyvinylidene chloride copolymer membrane. The solvents are removed from the wet membrane to form the asymmetric polyvinylidene chloride (PVDC) copolymer membrane. The membrane then may be further heated to form a carbon asymmetric membrane in which the porous support structure and separation layer of the PVDC membrane is maintained. The asymmetric carbon membrane may be useful to separate gases such as olefins from their corresponding paraffins, hydrogen from syngas or cracked gas, natural gas or refinery gas, oxygen/nitrogen, or carbon dioxide and methane.
Abstract:
A process for separating hydrogen from a gas mixture having hydrogen and a larger gas molecule is comprised of flowing the gas mixture through a carbonized polyvinylidene chloride (PVDC) copolymer membrane having a hydrogen permeance in combination with a hydrogen/methane selectivity, wherein the combination of hydrogen permeance and hydrogen/methane selectivity is (i) at least 30 GPU hydrogen permeance and at least 200 hydrogen/methane selectivity or (ii) at least 10 GPU hydrogen permeance and at least 700 hydrogen/methane selectivity. The carbonized PVDC copolymer may be made by heating and restraining a polyvinylidene chloride copolymer film or hollow fiber having a thickness of 1 micrometer to 250 micrometers to a pretreatment temperature of 100 o C to 180 o C to form a pretreated polyvinylidene chloride copolymer film and then heating and restraining the pretreated polyvinylidene chloride copolymer film to a maximum pyrolysis temperature from 350 o C to 750 o C.