Abstract:
Process fluid flow in the primary flow passage (70) of a compressor (20) is altered by selective inclusion of one or more tooth-like, annular circumferential flanges (48) in its secondary flow passage (72). The compressor's secondary flow passage is defined between opposing surfaces of a hub (40) of the impeller (26) and the opposing hub side (64) of the housing (21). The annular circumferential flange is coupled to the hub of the impeller and/or the hub side of the compressor housing within the secondary flow passage. A compressor incorporating one or more of the annular circumferential flanges in its secondary flow passage achieves more uniform flow velocity flow within the primary flow passage.
Abstract:
A diffuser for a compressor includes an annular diffuser passageway defined by a hub wall and a shroud wall of a housing of the compressor. The annular diffuser passageway may be fluidly coupled with a centrifugal impeller configured to rotate with a rotary shaft of the compressor about a center axis. The diffuser may also include a plurality of low solidity diffuser vanes extending into the annular diffuser passageway from the hub wall or the shroud wall and arranged annularly about the center axis. The diffuser may further include a plurality of high solidity diffuser vanes disposed radially outward from the plurality of low solidity diffuser vanes and extending into the annular diffuser passageway from the hub wall or the shroud wall and arranged annularly about the center axis.
Abstract:
A balance piston seal assembly for a balance piston of a compressor is provided. The balance piston seal assembly may include a balance piston seal, a stationary support, and a gripping assembly disposed between the balance piston seal and the stationary support. The balance piston seal may be configured to be disposed about the balance piston such that an inner radial surface of the balance piston seal and an outer radial surface of the balance piston define a radial clearance therebetween. The stationary support may be configured to be coupled or integral with a casing of the compressor. The gripping assembly may be configured to secure the balance piston seal with the stationary support and to maintain concentricity between the balance piston seal and the balance piston during thermal radial expansion of the balance piston seal relative to the balance piston.
Abstract:
A supersonic compressor including an inlet configured to receive and flow therethrough a process fluid. The supersonic compressor may further include a rotary shaft and a centrifugal impeller coupled therewith. The centrifugal impeller may be configured to impart energy to the process fluid received and to discharge the process fluid therefrom in at least a partially radial direction at an exit absolute Mach number of about one or greater. The supersonic compressor may further include a static diffuser circumferentially disposed about the centrifugal impeller and configured to receive the process fluid therefrom and convert the energy imparted. The supersonic compressor may further include a collector fluidly coupled to and configured to collect the process fluid exiting the diffuser, such that the supersonic compressor is configured to provide a compression ratio of at least about 8:1.
Abstract:
A supersonic compressor including an inlet configured to receive and flow therethrough a process fluid. The supersonic compressor may further include a rotary shaft and a centrifugal impeller coupled therewith. The centrifugal impeller may be configured to impart energy to the process fluid received and to discharge the process fluid therefrom in at least a partially radial direction at an exit absolute Mach number of about one or greater. The supersonic compressor may further include a static diffuser circumferentially disposed about the centrifugal impeller and configured to receive the process fluid therefrom and convert the energy imparted. The supersonic compressor may further include a collector fluidly coupled to and configured to collect the process fluid exiting the diffuser, such that the supersonic compressor is configured to provide a compression ratio of at least about 8:1.
Abstract:
A balance piston seal assembly for a balance piston of a compressor is provided. The balance piston seal assembly may include a balance piston seal, a stationary support, and a gripping assembly disposed between the balance piston seal and the stationary support. The balance piston seal may be configured to be disposed about the balance piston such that an inner radial surface of the balance piston seal and an outer radial surface of the balance piston define a radial clearance therebetween. The stationary support may be configured to be coupled or integral with a casing of the compressor. The gripping assembly may be configured to secure the balance piston seal with the stationary support and to maintain concentricity between the balance piston seal and the balance piston during thermal radial expansion of the balance piston seal relative to the balance piston.