Abstract:
Process fluid flow in the primary flow passage (70) of a compressor (20) is altered by selective inclusion of one or more tooth-like, annular circumferential flanges (48) in its secondary flow passage (72). The compressor's secondary flow passage is defined between opposing surfaces of a hub (40) of the impeller (26) and the opposing hub side (64) of the housing (21). The annular circumferential flange is coupled to the hub of the impeller and/or the hub side of the compressor housing within the secondary flow passage. A compressor incorporating one or more of the annular circumferential flanges in its secondary flow passage achieves more uniform flow velocity flow within the primary flow passage.
Abstract:
A supersonic compressor including an inlet configured to receive and flow therethrough a process fluid. The supersonic compressor may further include a rotary shaft and a centrifugal impeller coupled therewith. The centrifugal impeller may be configured to impart energy to the process fluid received and to discharge the process fluid therefrom in at least a partially radial direction at an exit absolute Mach number of about one or greater. The supersonic compressor may further include a static diffuser circumferentially disposed about the centrifugal impeller and configured to receive the process fluid therefrom and convert the energy imparted. The supersonic compressor may further include a collector fluidly coupled to and configured to collect the process fluid exiting the diffuser, such that the supersonic compressor is configured to provide a compression ratio of at least about 8:1.
Abstract:
A turbomachine type chemical reactor for processing a process fluid is presented. The turbomachine type chemical reactor includes at least one impeller section and a stationary diffuser section arranged downstream. The impeller section accelerates the process fluid to a supersonic flow. A shock wave is generated in the stationary diffuser section that instantaneously increases static temperature of the process fluid downstream the shock wave for processing the process fluid. Static pressure of the process fluid is simultaneously increased across the shock wave. The turbomachine type chemical reactor significantly reduces residence time of the process fluid in the chemical reactor and improves efficiency of the chemical reactor.
Abstract:
A diffuser for a compressor includes an annular diffuser passageway defined by a hub wall and a shroud wall of a housing of the compressor. The annular diffuser passageway may be fluidly coupled with a centrifugal impeller configured to rotate with a rotary shaft of the compressor about a center axis. The diffuser may also include a plurality of low solidity diffuser vanes extending into the annular diffuser passageway from the hub wall or the shroud wall and arranged annularly about the center axis. The diffuser may further include a plurality of high solidity diffuser vanes disposed radially outward from the plurality of low solidity diffuser vanes and extending into the annular diffuser passageway from the hub wall or the shroud wall and arranged annularly about the center axis.
Abstract:
A combustor (100) includes a housing (10) and a liner (15) that define an inlet (20) configured to receive an inlet fluid. An inlet splitter (25) is disposed in the inlet which splits the inlet into a first annulus (40) and a second annulus (45). A fuel supply system (70) selectively injects fuel into the first annulus and the second annulus, and a centerbody (90) that includes a plurality of struts (95) radially extending from a central hub (105) receives the inlet fluid mixed with fuel, thereby creating fluid swirl.
Abstract:
A supersonic compressor including an inlet configured to receive and flow therethrough a process fluid. The supersonic compressor may further include a rotary shaft and a centrifugal impeller coupled therewith. The centrifugal impeller may be configured to impart energy to the process fluid received and to discharge the process fluid therefrom in at least a partially radial direction at an exit absolute Mach number of about one or greater. The supersonic compressor may further include a static diffuser circumferentially disposed about the centrifugal impeller and configured to receive the process fluid therefrom and convert the energy imparted. The supersonic compressor may further include a collector fluidly coupled to and configured to collect the process fluid exiting the diffuser, such that the supersonic compressor is configured to provide a compression ratio of at least about 8:1.