Metal-Free Monolithic Epitaxial Graphene-On-Diamond PWB
    1.
    发明申请
    Metal-Free Monolithic Epitaxial Graphene-On-Diamond PWB 有权
    无金属整体外延石墨烯在金刚石板上

    公开(公告)号:US20150305158A1

    公开(公告)日:2015-10-22

    申请号:US14258448

    申请日:2014-04-22

    Inventor: David G. Findley

    Abstract: According to some embodiments, an apparatus includes a circuit board made of polycrystalline diamond. The circuit board is formed by deposition of layers of poly(hydridocarbyne). Each layer has the geometry of a cross section of the circuit board. The circuit board is further formed by pyrolysis of the layers of poly(hydridocarbyne) at a temperature greater than or equal to 100 degrees Celsius and less than or equal to 800 degrees Celsius. The apparatus additionally includes a plurality of tubes formed within the circuit board. The tubes have a plurality of terminations at one or more surfaces of the circuit board. Each tube comprises a layer of graphene that is operable to permit each tube to conduct electrical current. Each layer of graphene is formed by thermolysis of the polycrystalline diamond circuit board at a temperature greater than or equal to 900 degrees Celsius. Each tube is substantially hollow each layer of graphene forms an outer surface of the respective tube.

    Abstract translation: 根据一些实施例,一种装置包括由多晶金刚石制成的电路板。 电路板通过沉积聚(hydridocarbyne)层形成。 每层具有电路板横截面的几何形状。 电路板进一步通过在大于或等于100摄氏度和小于或等于800摄氏度的温度下热分解聚(hydridocarbyne)层而形成。 该装置还包括形成在电路板内的多个管。 这些管在电路板的一个或多个表面具有多个端接。 每个管包括可操作以允许每个管传导电流的石墨烯层。 每层石墨烯通过多晶金刚石电路板在大于或等于900摄氏度的温度下进行热解来形成。 每个管基本上是中空的,每层石墨烯形成相应管的外表面。

    3-D diamond printing using a pre-ceramic polymer with a nanoparticle filler
    2.
    发明授权
    3-D diamond printing using a pre-ceramic polymer with a nanoparticle filler 有权
    使用具有纳米颗粒填料的预陶瓷聚合物的3-D金刚石印刷

    公开(公告)号:US09302945B2

    公开(公告)日:2016-04-05

    申请号:US14201450

    申请日:2014-03-07

    Inventor: David G. Findley

    Abstract: According to some embodiments, a method includes depositing alternating layers of a ceramic powder and a pre-ceramic polymer dissolved in a solvent. Each layer of the pre-ceramic polymer is deposited in a shape corresponding to a cross section of an object. The alternating layers of the ceramic powder and the pre-ceramic polymer are deposited until the layers of the pre-ceramic polymer form the shape of the object. The method includes heating the deposited ceramic powder and pre-ceramic polymer to at least a decomposition temperature of the pre-ceramic polymer. The decomposition temperature of the pre-ceramic polymer is less than a sintering temperature of the ceramic powder. The method further includes removing excess ceramic powder that the pre-ceramic polymer was not deposited onto.

    Abstract translation: 根据一些实施方案,一种方法包括沉积溶解在溶剂中的陶瓷粉末和预陶瓷聚合物的交替层。 预陶瓷聚合物的各层以与物体的横截面对应的形状沉积。 沉积陶瓷粉末和预陶瓷聚合物的交替层直到预陶瓷聚合物层形成物体的形状。 该方法包括将沉积的陶瓷粉末和预陶瓷聚合物加热至至少一种预陶瓷聚合物的分解温度。 预陶瓷聚合物的分解温度小于陶瓷粉末的烧结温度。 该方法还包括除去未沉积预陶瓷聚合物的过量陶瓷粉末。

    Chiller tank system and method for chilling liquids
    3.
    发明授权
    Chiller tank system and method for chilling liquids 失效
    冷水箱系统和冷却液体的方法

    公开(公告)号:US06477855B1

    公开(公告)日:2002-11-12

    申请号:US10134857

    申请日:2002-04-29

    Abstract: A chiller tank system for containment of chilled liquids comprises a first tank and a second tank position within the first tank. The first tank is spaced apart from the second tank so that insulation material can be positioned between them The second tank defines a chamber for receiving the liquid to be chilled. A straight-lined, chiller barrel is positioned vertically within the chamber, the chiller barrel defining a bore connected to a flexible, dual hose. The straight-lined chiller barrel extends downward into the tank thereby evenly chilling the liquid to avoid thermal stratification that causes vaporization by creating warm spots within the liquid. A refrigeration unit supplies inert refrigerant to the tank. The dual hose circulates refrigerant between the refrigeration unit and the chiller barrel, the dual hose comprising an inner hose within an outer hose, the outer hose concentric to and spaced apart from the inner hose thereby creating two channels, one for transporting the refrigerant to the chiller barrel and the other for transporting the refrigerant away from the chiller barrel.

    Abstract translation: 用于容纳冷冻液体的冷却箱系统包括在第一罐内的第一罐和第二罐位置。 第一个储罐与第二个储罐隔开,以便绝缘材料可以位于它们之间。第二个罐限定一个容纳待冷却液体的室。 直排式制冷机筒垂直放置在室内,冷水机筒限定了连接到柔性双软管的孔。 直线冷却器筒向下延伸到罐中,从而均匀地冷却液体,以避免热分层,通过在液体内产生温热点而引起汽化。 制冷单元向罐提供惰性制冷剂。 双软管在制冷单元和冷却器筒之间循环制冷剂,双软管包括外软管内的内软管,外软管与内软管同心并间隔开,从而形成两个通道,一个用于将制冷剂输送到 冷却器桶,另一个用于将制冷剂从冷却器筒输送。

    Metal-Free Monolithic Epitaxial Graphene-On-Diamond PWB With Optical Waveguide
    6.
    发明申请
    Metal-Free Monolithic Epitaxial Graphene-On-Diamond PWB With Optical Waveguide 审中-公开
    无金属整体外延石墨烯金刚石PWB与光波导

    公开(公告)号:US20150301281A1

    公开(公告)日:2015-10-22

    申请号:US14258477

    申请日:2014-04-22

    Inventor: David G. Findley

    Abstract: According to some embodiments, an apparatus includes a circuit board made of polycrystalline diamond. The circuit board is formed by thermolysis of layers of a preceramic polymer. A plurality of tubes are formed within the circuit board and comprise a plurality of terminations at one or more surfaces of the circuit board. Each tube comprises a layer of graphene that is operable to permit each tube to conduct electrical current. Each layer of graphene is formed by thermolysis of the polycrystalline diamond circuit board at a temperature greater than or equal to 900 degrees Celsius. The apparatus also includes a plurality of optical waveguides formed within the circuit board. Each optical waveguide comprises a core of polycrystalline diamond surrounded by silicon carbide. The polycrystalline diamond is formed by thermolysis of poly(hydridocarbyne) and the silicon carbide is formed by thermolysis of poly(methylsilyne).

    Abstract translation: 根据一些实施例,一种装置包括由多晶金刚石制成的电路板。 电路板由预陶瓷聚合物的层的热分解形成。 在电路板内形成多个管,并且在电路板的一个或多个表面上包括多个终端。 每个管包括可操作以允许每个管传导电流的石墨烯层。 每层石墨烯通过多晶金刚石电路板在大于或等于900摄氏度的温度下进行热解来形成。 该装置还包括形成在电路板内的多个光波导。 每个光波导包括由碳化硅包围的多晶金刚石核心。 多晶金刚石通过聚(氢化碳炔)的热分解形成,并且碳化硅通过聚(甲基甲硅烷基)的热分解形成。

    3-D Diamond Printing Using a Pre-Ceramic Polymer with a Nanoparticle Filler
    7.
    发明申请
    3-D Diamond Printing Using a Pre-Ceramic Polymer with a Nanoparticle Filler 有权
    使用预陶瓷聚合物与纳米颗粒填料的3-D金刚石印刷

    公开(公告)号:US20150251958A1

    公开(公告)日:2015-09-10

    申请号:US14201450

    申请日:2014-03-07

    Inventor: David G. Findley

    Abstract: According to some embodiments, a method includes depositing alternating layers of a ceramic powder and a pre-ceramic polymer dissolved in a solvent. Each layer of the pre-ceramic polymer is deposited in a shape corresponding to a cross section of an object. The alternating layers of the ceramic powder and the pre-ceramic polymer are deposited until the layers of the pre-ceramic polymer form the shape of the object. The method includes heating the deposited ceramic powder and pre-ceramic polymer to at least a decomposition temperature of the pre-ceramic polymer. The decomposition temperature of the pre-ceramic polymer is less than a sintering temperature of the ceramic powder. The method further includes removing excess ceramic powder that the pre-ceramic polymer was not deposited onto.

    Abstract translation: 根据一些实施方案,一种方法包括沉积溶解在溶剂中的陶瓷粉末和预陶瓷聚合物的交替层。 预陶瓷聚合物的各层以与物体的横截面对应的形状沉积。 沉积陶瓷粉末和预陶瓷聚合物的交替层直到预陶瓷聚合物层形成物体的形状。 该方法包括将沉积的陶瓷粉末和预陶瓷聚合物加热至至少一种预陶瓷聚合物的分解温度。 预陶瓷聚合物的分解温度小于陶瓷粉末的烧结温度。 该方法还包括除去未沉积预陶瓷聚合物的过量陶瓷粉末。

Patent Agency Ranking