Abstract:
Described are polyesters comprising (a) a dicarboxylic acid component comprising 2,5-furandicarboxylic acid residues; optionally, aromatic dicarboxylic acid residues and/or modifying aliphatic dicarboxylic acid residues and 1,4-cyclohexanedimethanol residues. The polyesters may be manufactured into articles such as fibers, films, bottles, coatings, or sheets.
Abstract:
Disclosed is an oxidation process to produce a crude carboxylic acid product. The process comprises oxidizing a feed stream comprising at least one oxidizable compound to generate a crude carboxylic acid slurry comprising furan-2,5-dicarboxylic acid (FDCA) and compositions thereof. Also disclosed is a process to produce a dry purified carboxylic acid product by utilizing various purification methods on the crude carboxylic acid.
Abstract:
Oxygen-scavenging polyester compositions are disclosed that include residues of one or more unsaturated diols having from 4 to 8 carbon atoms, in an amount from about 0.01 mole percent to about 10 mole percent, and residues of terephthalic acid in an amount of at least 50 mole percent, in each case based on the total amount of residues of dicarboxylic acids in the polyester composition comprising 100 mole percent. The polyester compositions typically have an intrinsic viscosity that is at least 0.65 dL/g.
Abstract:
Described are polyesters comprising (a) a dicarboxylic acid component comprising 2,5-furandicarboxylic acid residues; optionally, aromatic dicarboxylic acid residues and/or modifying aliphatic dicarboxylic acid residues and 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues. The polyesters may be manufactured into articles such as fibers, films, bottles, coatings, or sheets.
Abstract:
Polymer blends suitable for packaging are disclosed that include a transition metal; one or more polyamide homopolymers or copolymers; and one or more polyethylene terephthalate homopolymers or copolymers obtained by a melt phase polymerization using a catalyst system comprising aluminum atoms in an amount, for example, from about 3 ppm to about 60 ppm and one or more alkaline earth metal atoms, alkali metal atoms, or alkali compound residues in an amount, for example, from about 1 ppm to about 25 ppm, in each case based on the weight of the one or more polyethylene terephthalate homopolymers or copolymers. The polymer blends disclosed exhibit improved oxygen-scavenging activity compared with blends made using polymers prepared with conventional catalyst systems.
Abstract:
Thermoplastic polymer compositions having enhanced properties, as well as methods of making and using the same, are provided. Thermoplastic polymers according to some aspects of the present invention may be rigid, but may also be suitable for use in applications requiring a thermoplastic polymer resin. Thermoplastic polymers according to various aspects of the present invention may be useful in preparing shaped articles such as, for example, sheets, films, tubes, preforms, bottles, profiles, and other similar articles.
Abstract:
Polyester compositions are disclosed that include a melt-phase polyethylene terephthalate polyester having incorporated therein residues of a monomer having two or more fused aromatic rings, and that also include titanium. Also disclosed are articles that include the disclosed polyester compositions, and processes for producing such polyester compositions, that include the steps of forming a mixture comprising ethylene glycol, at least one acid chosen from terephthalic acid and derivatives of terephthalic acid, and a monomer having two or more fused aromatic rings; and reacting the mixture in the presence of titanium to obtain the melt-phase polyethylene terephthalate polyester.
Abstract:
Polyester compositions are disclosed that include a melt-phase polyethylene terephthalate polyester having incorporated therein residues of a monomer having two or more fused aromatic rings, and that also include aluminum, and optionally an alkali metal or an alkaline earth metal. Also disclosed are articles that include the disclosed polyester compositions, and processes for producing such polyester compositions, that include the steps of forming a mixture comprising ethylene glycol, at least one acid chosen from terephthalic acid and derivatives of terephthalic acid, and a monomer having two or more fused aromatic rings; and reacting the mixture in the presence of aluminum, and optionally an alkali metal or an alkaline earth metal, to obtain the melt-phase polyethylene terephthalate polyester.
Abstract:
Articles comprising at least one polyester polymer melt phase product comprising at least one polyethylene terephthalate polyester; at least one metal compound chosen from alkali metal-aluminum compounds; and from 5 ppm to 1000 ppm of at least one phenolic stabilizer. Also provided is a melt phase process for making a polyester polymer melt phase product comprising: forming a slurry comprising at least one glycol chosen from ethylene glycol and derivatives of ethylene glycol and at least one acid chosen from terephthalic acid and derivatives of terephthalic acid; adding 5 ppm to 1000 ppm of at least one phenolic stabilizer; and reacting said at least one glycol and said at least one acid in the presence of at least one catalyst chosen from alkali metal- aluminum catalysts.
Abstract:
A stable catalyst solution suitable for catalyzing the polycondensation of reactants to make polyester polymers comprising: (i) M, wherein M is represented by an alkaline earth metal or alkali metal and (ii) aluminum metal and (iii) a polyhydroxyl solvent having at least 3 carbon atoms and at least two primary hydroxyl groups, the longest carbon chain being a hydrocarbon; such as 1,3-propane diol, 1,4-butane diol, 1,5-pentane diol, or combinations thereof., wherein the molar ratio of M:AI ranges from 0.75:1 to less than 1.5:1. The catalyst solution is desirably a solution which does not precipitate upon standing over a period of at least one week at room temperature (25°C-40°C), even at molar ratios of M:AI approaching 1 :1. There is also provided a method for the manufacture of the solution, its feed to and use in the manufacture of a polyester polymer, and polyester polymers obtained by combining certain ingredients or containing the residues of these ingredients in the composition.