Vehicle arresting bed systems
    2.
    发明专利

    公开(公告)号:AU6650898A

    公开(公告)日:1998-08-26

    申请号:AU6650898

    申请日:1998-02-06

    Abstract: Vehicle arresting beds, for installation at the ends of aircraft runways, are effective to safely decelerate aircraft entering the bed. The arresting bed is assembled of a large number of blocks of cellular concrete having predetermined compressive gradient strength, so that aircraft landing gear is subjected to drag forces effective to slow a variety of types of aircraft, while providing deceleration within a safe range of values. An arresting bed typically includes an entry region of a depth increasing from 9 to 24 inches formed of blocks having a first compressive gradient strength. A second region, which may be tapered into the first region and increase in depth to 30 inches, is formed of blocks having a greater compressive gradient strength. An aircraft thus experiences increasing drag forces while it travels through the bed, to provide an arresting capability suitable for a variety of aircraft. A protective hardcoat layer of cellular concrete of strength greater than the blocks overlays the blocks to enable service personnel to walk on the bed without damage. Arresting bed systems may be provided in alternative configurations, such as a bed formed of an aggregate including pieces of cellular concrete with or without interspersed pieces of other compressible material and covered by a hardcoat layer.

    Arresting material test apparatus and methods

    公开(公告)号:AU6148298A

    公开(公告)日:1998-08-26

    申请号:AU6148298

    申请日:1998-02-06

    Abstract: Arresting material test apparatus, test probes and test methods enable testing of compressive gradient strength of cellular concrete, and materials having similar characteristics, on a continuous basis from the surface of a section to a typical internal penetration depth of at least 60 percent of thickness. Previous testing of cellular concrete typically focused on testing to confirm a minimum structural strength prior to structural failure or shattering of a test sample. For an aircraft arresting bed, for example, cellular concrete must exhibit a compressive gradient strength in a relatively narrow precalculated range continuously from the surface to penetration depth equal to 60 to 80 percent of sample thickness. Precalculated and controlled compressive gradient strength is critical to enabling an aircraft to be safely stopped within a set distance, without giving rise to drag forces exceeding main landing gear structural limits. New test apparatus, test probes with post-compression build-up relief and test methods are described to enable such testing and recordation of data showing the gradient of compressive strength as it increases from the surface of a test sample to a predetermined depth of penetration. Resulting compressive gradient strength data is representative of performance of cellular concrete sections in decelerating an aircraft.

    Vehicle arresting units and fabrication methods

    公开(公告)号:AU6148398A

    公开(公告)日:1998-08-26

    申请号:AU6148398

    申请日:1998-02-06

    Abstract: Vehicle arresting blocks of cellular concrete are usable to safely slow travel of an object and may be used to construct an aircraft arresting bed at the end of an airport runway. For such purposes, cellular concrete blocks must be fabricated to exhibit compressive gradient strengths of predetermined values to provide sufficient, but not excessive, deceleration forces on an object. Material uniformity characteristics must be met to avoid unacceptable drag force variations, so that arresting blocks desirably exhibit a predetermined compressive gradient strength (e.g., a 60/80 CGS) over a depth of penetration of 10 to 66 percent of block thickness. A 60/80 CGS will typically represent an average compressive strength of 70 pounds per square inch over such depth of penetration. Prior applications of cellular concrete typically involved meeting minimum strength values and the production methods did not meet uniformity or compressive gradient strength predictability as required for arresting blocks. Described methods include parameter, ingredient and process controls and ranges effective to enable fabrication of arresting blocks having dry densities and compressive gradient strengths which can be specified in order to provide limited deceleration of aircraft and other objects. Limited deceleration can avoid destructive effects inherent in excess rates of deceleration. SEQUENCE LISTING (Not Applicable)

Patent Agency Ranking