Abstract:
Embodiments of the present invention provide improvements to UAV launching systems. The disclosed launching system eliminates the use of hydraulic fluid and compressed nitrogen or air by providing an electric motor-driven tape that causes movement of a shuttle along a launcher rail.
Abstract:
resumo patente de invenção: "sistemas e métodos de captura de veículo". cerca de captura para deter a ultrapassagem de um carro que sai da pista de corrida, que compreende pelo menos dois pólos pivotáveis, cada pólo compreendendo um ponto de pivotamento ao longo do pólo ou em sua base, pelo menos um cabo se estendendo entre pelo menos os dois pólos, e pelo menos uma porção da rede ou cercado instalada entre os pólos, sustentada pelo menos por um cabo.
Abstract:
Embodiments of the present invention relate to composite materials for use as a vehicle arresting system (also referred to as an Engineered Material Arresting System (EMAS). Specific embodiments may use modified polymeric foams composites. The polymeric foams may include additives, coatings, combinations of both, or other features than render them useful for an EMAS. The polymeric foams may also have one or more modified surfaces that provide a protective crust. For example, the one or more surface may be modified by application of heat in order to help close the polymeric foam cells and/or to create an encapsulative surface. These features can provide enhanced weather resistance, fire resistance, moisture absorption, jet blast resistance, improve their energy absorbing properties, or other desired features.
Abstract:
Embodiments of the present invention provide systems and methods for vehicle arresting systems made from low-density particles and appropriate binders. The systems are designed to provide a barrier or a bed that is placed at the end of a runway or at the edge of a highway that will predictably and reliably crush (or otherwise deform) under the pressure of vehicle wheels traveling off the end of the runway or the edge of the road.
Abstract:
Addressed are systems and methods for providing to pilots of landing aircraft real-time (or near real-time) information concerning runway conditions and aircraft-stopping performance to be encountered upon landing. The systems and methods contemplate using more objective data than utilized at present and providing the information in automated manner. Information may be obtained by using conventional ground-based runway friction testers or, advantageously, by using air-based equipment such as (but not limited to) unmanned aerospace vehicles (UAVs).
Abstract:
Arresting material test apparatus, test probes and test methods enable testing of compressive gradient strength of cellular concrete, and materials having similar characteristics, on a continuous basis from the surface of a section to a typical internal penetration depth of at least 60 percent of thickness. Previous testing of cellular concrete typically focused on testing to confirm a minimum structural strength prior to structural failure or shattering of a test sample. For an aircraft arresting bed, for example, cellular concrete must exhibit a compressive gradient strength in a relatively narrow precalculated range continuously from the surface to penetration depth equal to 60 to 80 percent of sample thickness. Precalculated and controlled compressive gradient strength is critical to enabling an aircraft to be safely stopped within a set distance, without giving rise to drag forces exceeding main landing gear structural limits. New test apparatus, test probes with post-compression build-up relief and test methods are described to enable such testing and recordation of data showing the gradient of compressive strength as it increases from the surface of a test sample to a predetermined depth of penetration. Resulting compressive gradient strength data is representative of performance of cellular concrete sections in decelerating an aircraft.
Abstract:
Embodiments of the present disclosure relate generally to macro-patterned materials and methods of their use in connection with vehicle arresting systems. Certain embodiments provide 3-D folded materials, honeycombs, lattice structures, and other periodic cellular material structures, that can be used for arresting vehicles. The materials can be engineered to have properties that allow them to reliably crush in a predictable manner under pressure from a vehicle. The materials can be formed into various shapes and combined in various ways in order to provide the desired properties.
Abstract:
Vehicle arresting beds, for installation at the ends of aircraft runways, are effective to safely decelerate aircraft entering the bed. The arresting bed is assembled of a large number of blocks of cellular concrete having predetermined compressive gradient strength, so that aircraft landing gear is subjected to drag forces effective to slow a variety of types of aircraft, while providing deceleration within a safe range of values. An arresting bed typically includes an entry region of a depth increasing from 9 to 24 inches formed of blocks having a first compressive gradient strength. A second region, which may be tapered into the first region and increase in depth to 30 inches, is formed of blocks having a greater compressive gradient strength. An aircraft thus experiences increasing drag forces while it travels through the bed, to provide an arresting capability suitable for a variety of aircraft. A protective hardcoat layer of cellular concrete of strength greater than the blocks overlays the blocks to enable service personnel to walk on the bed without damage. Arresting bed systems may be provided in alternative configurations, such as a bed formed of an aggregate including pieces of cellular concrete with or without interspersed pieces of other compressible material and covered by a hardcoat layer.