Abstract:
Peer-to-peer communication between user terminals in a licensed spectrum is enabled by a method comprising the following steps: —communicating directly, peer-to-peer, between the first and the second mobile terminal, and —disconnecting the peer-to-peer communication in dependence of control signals received or not received from the base station. Thus, according to the invention, the network is enabled to control the peer-to-peer communication between two user terminals.
Abstract:
According to the present invention, a method in a base station is provided for predicting interference contribution, when scheduling an uplink data packet transmission from a first user equipment. The first user equipment is connected to the base station. The first user equipment is in the neighbor of a neighboring cell served by a neighboring base station. The method comprises the steps of: Obtaining signal strength measurements regarding the first user equipment. The signal strength measurements are based on a signal between the first user equipment and the neighboring base station; Receiving a resource scheduling request regarding the first user equipment for the uplink data packet transmission; Scheduling uplink resources for the requested uplink data packet transmission; Determining transmission power to be used for the scheduled uplink resources, and: Estimating an interference prediction contribution based on the determined transmission power and the obtained signal strength.
Abstract:
An object of the present invention is to provide a mechanism of measuring a reference signal that is less over head consuming and less time consuming. The object is achieved by a method for managing uplink channel estimation in a base station. The base station is comprised in a radio access network using Frequency Division Duplex (FDD). The base station is associated with a first cell of a number of cells within the radio access network. The base station is adapted to connect at least one mobile terminal, being situated in the first cell, to a network infrastructure. The method comprises the step of transmitting a redirected reference signal on an uplink band to the mobile terminal. The redirected reference signal is intended for uplink channel estimation.
Abstract:
The present invention relates to a method for sending reserved sub-carriers to a UE for the purpose of reducing peak to average power ratio (PAPR) of the transmitted signal to ensure sufficient quality of the modulated signal to achieve high data rate, including the steps of sending the information related to dynamic activation and deactivation of reserved sub-carriers on a common channel, which is readable for all UEs in idle and in connected mode; dynamically activating the transmission of the reserved sub- carriers in a cell when high modulation quality is to be maintained; dynamically deactivating the transmission of the reserved sub-carriers in a cell when high modulation quality is not required. The invention furthermore relates to a radio base station and a UE relating to said method.
Abstract:
In a method of selecting an access network from among one or more access networks capable of providing service to a mobile communication station, a radio quality from the terminal to each access network is determined (S1), for each access network, a utilization factor for at least one node is determining (S2), for each access network, a user perceived data quality, based on said determined utilization factor and said determined radio quality for the access network, is determined (S3), and at least one of said access networks, is selected (S4) based on the determined user perceived quality, whereby an improved user perceived data quality is enabled.
Abstract:
A method and technique are provided for efficiently acknowledging transmitted information in a system that employs variable rate data transmission, and skips data block sequence numbers depending on the transmission rate used. An RBB field in an ACK/NACK message includes a starting sequence number, an indication of a sequence number step, and a bitmap. The starting sequence number indicates a first block in a series or sequence of transmitted blocks that are being acknowledged via the ACK/NACK message. The sequence number step indicates a minimum difference between sequence numbers of blocks in the sequence. Where the sequence is ordered, the sequence number step is a difference between the sequence numbers of adjacent or consecutive blocks in the series. The bitmap is configured so that each bit in the bitmap represents an acknowledgment of one of blocks in the series. The RBB field can also include multiple starting sequence numbers, and both a sequence number step and a length for each starting sequence number. Each set of starting sequence number, sequence number step and length indicates a subseries or subsequence of the series of transmitted blocks that is being acknowledged via the ACK/NACK message. The starting sequence number indicates a sequence number of a first block in the subsequence, the length indicates how many blocks are in the subsequence, and the sequence number step indicates a difference between sequence numbers of adjacent blocks in the subsequence.