Abstract:
A signal-to-interference estimate is generated using unknown data symbols in place of or in addition to pilot symbols. Data received over a data channel (traffic channel or control channel) are collected. The data symbols are then used to compute an observation metric based on deviations of the data symbols from a predetermined set of possible data symbols, wherein one of the data symbols and symbol constellation is normalized. A data channel signal-to-interference ratio is then computed based on the observation metric.
Abstract:
Methods and apparatus for adaptively transmitting data in a wireless communication network are disclosed, in which channel conditions between a mobile terminal and two or more base stations in an active set are evaluated and used to select a transmission mode from a set of available downlink transmission modes including a non-interference-coordinated point-to-point transmission mode as well as at least one of a multi-cell single-frequency-network transmission mode and an interference-coordinated point-to-point transmission mode. Using the dynamic transmission mode selection described herein, a higher cell-edge throughput in HSDPA systems may be achieved.
Abstract:
With a nonparametric G-Rake receiver, combining weights may be determined using a nonparametric mechanism in multiple-input, multiple-output (MIMO) scenarios. In an example embodiment, a method for a receiving device having a nonparametric G-Rake receiver entails calculating an impairment covariance matrix and determining combining weights. More specifically, the impairment covariance matrix is calculated based on a pilot channel using a nonparametric mechanism in a MIMO scenario in which a code-reuse interference term exists. The combining weights are determined for the nonparametric G-Rake receiver responsive to the impairment covariance matrix and by accounting for the code-reuse interference term.
Abstract:
A base station receives channel quality reports from a plurality of mobile terminals. The channel quality reports from the mobile terminals indicate the signal power of the signals received by the mobile terminals from the base station and one or more interference parameters relating to the power of impairment components contributing to the total impairment of the received signal during a first time interval. The base station computes an estimated channel quality indication for a second time interval subsequent to the first time interval based on expected variations in the powers of the impairment components. The estimated channel quality indication for the second time interval is used by the base station to schedule the mobile terminals and to determine the transmission format.
Abstract:
Methods and apparatus for adaptively transmitting data in a wireless communication network are disclosed, in which channel conditions between a mobile terminal and two or more base stations in an active set are evaluated and used to select a transmission mode from a set of available downlink transmission modes including a non-interference-coordinated point-to--point transmission mode as well as at least one of a multi-cell single-frequency-network transmission mode and an interference-coordinated point-to-point transmission mode. Using the dynamic transmission mode selection described herein, a higher cell-edge throughput in HSDPA systems may be achieved.
Abstract:
In a wireless receiver, an estimated decision boundary for use in detecting symbol values from one group of combined received symbols is calculated based on an estimated traffic-to-pilot channel scaling ratio or an estimated decision boundary corresponding to another group of combined received symbols. By properly combining the information derived from the latter group of combined received symbols with channel estimation information for the former group, a decision boundary estimate for the former group can be obtained without the use of amplitude or power information for the latter group of symbols.
Abstract:
Methods and apparatus for changing the transmission/reception setup of a base station (BS) in a communication network to another transmission/reception setup (such as one using fewer transmit antennas and/or lower channel bandwidths) without affecting communication with user equipments involve "replacing" the existing BS with a "virtual" BS that has the other transmission/reception setup. Replacement can be performed by, for example, ramping down the power of the existing, or first, BS, which has a respective first cell or node identification (ID), and simultaneously ramping up the power of the virtual, or second, BS, which has a respective second cell or node ID.
Abstract:
Methods and apparatus for adaptively transmitting data in a wireless communication network are disclosed, in which channel conditions between a mobile terminal and two or more base stations in an active set are evaluated and used to select a transmission mode from a set of available downlink transmission modes including a non-interference-coordinated point-to-point transmission mode as well as at least one of a multi-cell single-frequency-network transmission mode and an interference-coordinated point-to-point transmission mode. Using the dynamic transmission mode selection described herein, a higher cell-edge throughput in HSDPA systems may be achieved.