Abstract:
A plasma chamber for coating a substrate with a polymer layer, the plasma chamber comprises a first electrode set and a second electrode set, the first and second electrode sets are arranged either side of a sample chamber for receiving a substrate, wherein the first and second electrode sets comprise plural electrode layers and wherein each electrode set comprises plural radiofrequency electrode layers or plural ground electrode layers for coating polymer to each surface of a substrate.
Abstract:
The present invention relates to hydrophilic, multi-functional ultra-thin coatings deposited onto substrates for different applications, with excellent performance in terms of stability and durability. The present invention also describes improved methods to deposit the hydrophilic, multi-functional ultra-thin coatings of the present invention. The coatings are deposited by means of a low pressure and low power plasma polymerization. The present invention also comprises substrates coated with a method and a coating according as described in the present invention.
Abstract:
A method for protecting a substrate from corrosion, which method comprises in sequence: a first step including plasma polymerization of a precursor monomer and deposition of the resultant polymer onto at least one surface of a substrate; a second step including exposing the polymer to an inert gas in the presence of a plasma without further deposition of polymer onto the or each surface of the substrate; a third step including plasma polymerization of the precursor monomer used in the first step and deposition of the resultant polymer onto the polymer deposited in the first step so as to increase the thickness of the polymer; and optionally, a fourth step including exposing the polymer to an inert gas in the presence of a plasma without further deposition of polymer onto the or each surface of the substrate.
Abstract:
The present invention concerns a method for depositing a halogen-free water repellent nanocoating on textile products by means of a low-pressure plasma polymerization coating process, wherein the halogen-free water repellent nanocoating is resistant against washing, laundering and dry cleaning.
Abstract:
The present invention provides a method for applying a surface coating on, for example, a sheet of fabric and further provides a plasma chamber (10) for coating a sheet of fabric, e.g. a textile material, with a polymer layer, the plasma chamber (10) comprising a plurality of electrode layers (RF, M) arranged successively within the plasma chamber, wherein at least two adjacent electrode layers are radiofrequency electrode layers (RF) or ground electrode layers (M), thereby providing a surface coating on both sides of a fabric sheet.
Abstract:
The invention relates to a method for pre-treating fibre reinforced composite plastic materials prior to painting, wherein the materials are subjected to a low pressure cold vacuum gas plasma treatment without preheating the materials. The invention further relates to a method for applying a painting layer on a fibre reinforced composite plastic material, wherein the method comprises the steps of pre-treating the material using a method according to any one of the preceding claims, and subsequently applying the painting layer to the pre-treated material.
Abstract:
The present invention concerns a method for coating outer, internal and inner surfaces of an item of footwear with a water- and/or oil-repellent coating by a low-pressure plasma polymerization coating process, by degassing the item of footwear prior to said coating process.
Abstract:
The present invention concerns a method for at least partially preventing discolouration of a substrate by a plasma coating process, by diffusing a plasma prior to and/or during depositing of said plasma on said substrate to form a coating. The present invention also concerns a plasma coating apparatus comprising a plasma diffuser for homogenizing a plasma density nearby a substrate to be coated.
Abstract:
A method of protecting a component from corrosion and providing electrical conductivity to one or more electrical contacts on the component, the method including the steps of placing the component in a chamber, and coating the component by plasma deposition of a polymer coating formed from any one or more of the following precursor monomers, acrylate, methacrylate or organosilane.
Abstract:
The present invention concerns a process for the deposition of a solder-through polymer coating on an uncoated printed circuit board which comprises the use of an average low power and low pressure plasma polymerisation in a polymerisation chamber of an organosilane precursor monomer which is introduced into said polymerisation chamber by means of a carrier gas, said organosilane being of the Formula Y1-X-Y2 (I) or -[Si(CH3)2-X-]n- (II), wherein : X is O or NH; Y1 is - Si(Y3)(Y4)Y5; Y2 is Si(Y3')(Y4')Y5'; Y3, Y4, Y5, Υ3', Υ4', and Y5' are each independently H or an alkyl group of up to 10 carbon atoms; the monomer of formula (II) is cyclic wherein n is 2 to 10, and wherein at most one of Y3, Y4 and Y5 is hydrogen, at most one of Υ3', Y4' and Y5' is hydrogen and the total number of carbon atoms is not more than 20.