Abstract:
An identification input device and a temperature detector that detects body temperature data. The identification input device may be an optical touch pen. The infrared touch pen may be affixed to the temperature detector using a hook and connector or a snap fit connector. In use, the temperature detector computes body temperature data and the identification input device determines an identifier. The identifier is unique to a user. After obtaining the body temperature data and identifier, a transmitter may transmit body temperature data and the identifier over a wireless communications path to a processing unit. By transmitting data over a wireless communications path, an individual's data or a large group of data may be analyzed and viewed via a display unit.
Abstract:
Devices and corresponding methods are provided to measure temperature and/or emissivity of a target. Emissivity of the target need not be known or assumed, and any temperature difference between a sensor and the target need not be zeroed or minimized. No particular bandpass filter is required. Devices can include one or two sensors viewing the same target as the target views different respective viewed temperatures. The respective viewed temperatures can be sensor temperatures, and a single sensor can be set to each of the respective viewed temperatures at different times. An analyzer determines the temperature and/or emissivity of the target based on the respective viewed temperatures and on plural net heat fluxes detected by the sensors and corresponding to the respective viewed temperatures.
Abstract:
The present invention relates to more accurate indication of fever. Temperature data from a large population of individuals are obtained and the temperature data are processed to determine a threshold, at a fever bump, above a normal range of distribution. The fever threshold, along with an individual's temperature, is used to indicate if the individual has a fever. Further, circadian information may be utilized to adjust the temperature data for an individual or the population of individuals.
Abstract:
A user obtains an individual's body temperature data and transmits the data to a medical monitor (e.g., a medical device) for display. Additional data includes a timestamp and location of the body temperature data. Once the data is transmitted, a user may view the medical monitor for a temperature reading. For example, a doctor may take a patient's temperature and the temperature reading is displayed on a medical monitor. The body temperature data of each patient is detected using a preferred temperature detector, such as a temporal artery thermometer using an arterial heat balance approach. After collecting an individual's body temperature data, the body temperature data can be transferred to a processor. By sending body temperature data for many individuals for a geographic region, the processor can identify a pattern (e.g., a pandemic) in the body temperature data.