Abstract:
Provided are coated oil and gas well production devices and methods of making and using such coated devices. In one form, the coated oil and gas well production device includes an oil and gas well production device including one or more bodies, and a coating on at least a portion of the one or more bodies, wherein the coating is chosen from an amorphous alloy, a heat-treated electroless or electro plated based nickel-phosphorous composite with a phosphorous content greater than 12 wt%, graphite, MoS 2 , WS 2 , a fullerene based composite, a boride based cermet, a quasicrystalline material, a diamond based material, diamond-like-carbon (DLC), boron nitride, and combinations thereof. The coated oil and gas well production devices may provide for reduced friction, wear, corrosion, erosion, and deposits for well construction, completion and production of oil and gas.
Abstract:
Provided are high manganese containing ferrous based components and their use in oil, gas and/or petrochemical applications. The components include 5 to 40 wt% manganese, 0.01 to 3.0 wt% carbon and the balance iron. The components may optionally include one or more alloying elements chosen from chromium, nickel, cobalt, molybdenum, niobium, copper, titanium, vanadium, nitrogen, boron and combinations thereof.
Abstract:
Provided are drill stem assemblies with ultra-low friction coatings for subterraneous drilling operations. In one form, the coated drill stem assemblies for subterraneous rotary drilling operations include a body assembly with an exposed outer surface including a drill string coupled to a bottom hole assembly or a coiled tubing coupled to a bottom hole assembly and an ultra-low friction coating on at least a portion of the exposed outer surface of the body assembly, wherein the coefficient of friction of the ultra-low friction coating is less than or equal to 0.15. The coated drill stem assemblies disclosed herein provide for reduced friction, vibration (stick-slip and torsional), abrasion and wear during straight hole or directional drilling to allow for improved rates of penetration and enable ultra-extended reach drilling with existing top drives.
Abstract:
Improved steel compositions and methods of making the same are provided. The present disclosure provides advantageous corrosion and/or cracking resistant steel. More particularly, the present disclosure provides high manganese (Mn) steel compositions having enhanced corrosion and/or cracking resistance, and methods for fabricating high manganese steel compositions having enhanced corrosion and/or cracking resistance. Methods for fabricating high manganese steel compositions (e.g., via passivation) having enhanced corrosion and/or cracking resistance are also provided.
Abstract:
Improved steel compositions and methods of making the same are provided. The present disclosure provides advantageous wear resistant steel. More particularly, the present disclosure provides high manganese (Mn) steel having enhanced wear resistance, and methods for fabricating high manganese steel compositions having enhanced wear resistance. The advantageous steel compositions/components of the present disclosure improve one or more of the following properties: wear resistance, ductility, crack resistance, erosion resistance, fatigue life, surface hardness, stress corrosion resistance, fatigue resistance, and/or environmental cracking resistance. In general, the present disclosure provides high manganese steels tailored to resist wear and/or erosion.
Abstract:
A coated sleeved oil and gas well production device includes an oil and gas well production device including one or more bodies and one or more sleeves proximal to the outer or inner surface of the one or more bodies, and a coating on at least a portion of the inner sleeve surface, outer sleeve surface, or a combination thereof, wherein the coating is chosen from an amorphous alloy, a heat-treated electro less or electro plated based nickel-phosphorous composite with a phosphorous content greater than 12 wt%, graphite, MoS2, WS2, a fullerene based composite, a boride based cermet, a quasicrystalline material, a diamond based material, diamond-like-carbon (DLC), boron nitride, and combinations thereof. The devices may provide for reduced friction, wear, erosion, corrosion, and deposits for well construction, completion and production of oil and gas.
Abstract:
Provided are drill stem assemblies with ultra-low friction coatings for subterraneous drilling operations. In one form, the coated drill stem assemblies for subterraneous rotary drilling operations include a body assembly with an exposed outer surface including a drill string coupled to a bottom hole assembly or a coiled tubing coupled to a bottom hole assembly and an ultra-low friction coating on at least a portion of the exposed outer surface of the body assembly, wherein the coefficient of friction of the ultra-low friction coating is less than or equal to 0.15. The coated drill stem assemblies disclosed herein provide for reduced friction, vibration (stick-slip and torsional), abrasion and wear during straight hole or directional drilling to allow for improved rates of penetration and enable ultra-extended reach drilling with existing top drives.
Abstract:
Improved steel compositions and methods of making the same are provided. The present disclosure provides advantageous wear resistant steel. More particularly, the present disclosure provides high manganese (Mn) steel having enhanced wear resistance, and methods for fabricating high manganese steel compositions having enhanced wear resistance. The advantageous steel compositions/components of the present disclosure improve one or more of the following properties: wear resistance, ductility, crack resistance, erosion resistance, fatigue life, surface hardness, stress corrosion resistance, fatigue resistance, and/or environmental cracking resistance. In general, the present disclosure provides high manganese steels tailored to resist wear and/or erosion.
Abstract:
Improved steel compositions and methods of making the same are provided. The present disclosure provides advantageous corrosion and/or cracking resistant steel. More particularly, the present disclosure provides high manganese (Mn) steel compositions having enhanced corrosion and/or cracking resistance, and methods for fabricating high manganese steel compositions having enhanced corrosion and/or cracking resistance. Methods for fabricating high manganese steel compositions (e.g., via passivation) having enhanced corrosion and/or cracking resistance are also provided.