Abstract:
Provided is a sensing circuit for recognizing a movement including: at least one light emitting device outputting light; at least one light receiving device receiving the light reflected by an object on the light emitting device and generating a plurality of current signals proportional to an amount of incident light; a signal conversion unit converting the plurality of current signals into a plurality of digital signals; a recognition unit measuring a synthetic digital signal to determine whether an object moves by receiving the plurality of current signals; and a control unit controlling the recognition unit, wherein the recognition unit generates a clock signal for the synthetic digital signal greater than a critical value and measures a count generated by the clock signal; and the control unit determines whether the object moves through a comparison of the count and a reference value.
Abstract:
The neuromorphic arithmetic device performs a multiply-accumulate (MAC) calculation using a multiplier and an accumulator. The neuromorphic arithmetic device includes an offset accumulator configured to receive a plurality of offset data measured a plurality of times and accumulate the plurality of offset data, a bit extractor configured to obtain average offset data by extracting at least one first bit from the plurality of accumulated offset data, and a cumulative synapse array configured to accumulate a plurality of multiplication values generated by the multiplier and output a cumulative result of the plurality of multiplication values corrected according to the average offset data.
Abstract:
Disclosed are a memory interface circuit including an output impedance monitor, which is capable of monitoring and calibrating an output impedance of a driving circuit in real time, and a method of calibrating the output impedance. The memory interface circuit includes a control circuit that outputs a digital transmission signal, a driving circuit that outputs an output signal, based on the digital transmission signal, an output impedance monitor that outputs a pull-up monitoring signal or a pull-down monitoring signal, based on the digital transmission signal and the output signal, and an output impedance calibrator that outputs an impedance monitoring signal, based on the pull-up monitoring signal or the pull-down monitoring signal, and wherein the driving circuit calibrates output impedance based on the impedance monitoring signal.
Abstract:
Disclosed is a receiving circuit, which includes a hysteresis detector that receives an input signal corresponding to a first voltage level and outputs a detection signal having a first threshold voltage and a second threshold voltage, and a level shifter that receives the detection signal, converts the first voltage level of the detection signal to a second voltage level higher than the first voltage level so as to be output as an output signal, and outputs a feedback signal of the second voltage level, and the hysteresis detector receives the feedback signal from the level shifter and adjusts the first threshold voltage and the second threshold voltage based on the feedback signal.
Abstract:
A differential driving circuit according to embodiments of the inventive may include a first driver drives a first pad to a first voltage according to a first driving signal, a second driver drives a second pad to a second voltage according to a second driving signal, a first and second capacitors for receiving a first and second voltage changes of the first and the second pad at one end thereof respectively to transmit the first and the second voltage change to the other end thereof respectively in a transition interval in which voltages of the first and second pads are changed, transition interval voltage adder circuit adds voltages respectively transmitted thereto through the first and second capacitors, and a transition interval asymmetry compensation circuit adjusts a slope of at least one of the first and second driving signals according to the added voltage.
Abstract:
Provided is a successive approximation register analog-to-digital converter (SAR ADC) including a digital-to-analog converter (DAC) generating and outputting first and second level voltages based on first and second analog input signals and a reference voltage signal; a comparator comparing the first and second level voltages and outputting a comparison signal according to a comparison result; and an SAR logic generating a digital signal based on the comparison signal, wherein the DAC includes: first and second input switches controlling reception of the first and second analog input signals, respectively; a first discharge switch connected electrically to the first input switch, the first discharge switch discharging leakage current according to an operation of the first input switch; and a second discharge switch connected electrically to the second input switch, the second discharge switch discharging leakage current according to an operation of the second input switch.
Abstract:
Provided is a successive approximation register analog-to-digital converter (SAR ADC) including a digital-to-analog converter (DAC) generating and outputting first and second level voltages based on first and second analog input signals and a reference voltage signal; a comparator comparing the first and second level voltages and outputting a comparison signal according to a comparison result; and an SAR logic generating a digital signal based on the comparison signal, wherein the DAC includes: first and second input switches controlling reception of the first and second analog input signals, respectively; a first discharge switch connected electrically to the first input switch, the first discharge switch discharging leakage current according to an operation of the first input switch; and a second discharge switch connected electrically to the second input switch, the second discharge switch discharging leakage current according to an operation of the second input switch.
Abstract:
Disclosed is an ultra-wide band (UWB) radar device including a first antenna circuit including a first transmission circuit, a first reception circuit, a first oscillator that supplies a first clock signal to the first transmission circuit and the first reception circuit, and a first frequency counter, a second antenna circuit including a second transmission circuit, a second reception circuit, a second oscillator that supplies a second clock signal to the second transmission circuit and the second reception circuit, and a second frequency counter, and a controller that detects the target. The controller corrects a frequency error between the first clock signal and the second clock signal and compensates for a synchronization error between the first antenna circuit and the second antenna circuit.
Abstract:
Disclosed is a transmitter which includes a channel driver that includes a pull-up transistor and a pull-down transistor connected between a power node and a ground node and outputs a voltage between the pull-up transistor and the pull-down transistor as a transmit signal, and a pre-driver that controls the pull-up transistor and the pull-down transistor in response to a driving signal and controls the channel driver such that the transmit signal is overshot at a rising edge of the driving signal and the transmit signal is undershot at a falling edge of the driving signal.
Abstract:
The neuromorphic arithmetic device comprises an input monitoring circuit that outputs a monitoring result by monitoring that first bits of at least one first digit of a plurality of feature data and a plurality of weight data are all zeros, a partial sum data generator that skips an arithmetic operation that generates a first partial sum data corresponding to the first bits of a plurality of partial sum data in response to the monitoring result while performing the arithmetic operation of generating the plurality of partial sum data, based on the plurality of feature data and the plurality of weight data, and a shift adder that generates the first partial sum data with a zero value and result data, based on second partial sum data except for the first partial sum data among the plurality of partial sum data and the first partial sum data generated with the zero value.