Abstract:
A component mounting apparatus for holding a rigid component in a downhole bore or a downhole collar based application includes a first body including first and second parallel spaced apart component holders disposed in a first common plane and a first support connecting the component holders together. The first and second parallel spaced apart component holders are operable to receive and grip a rigid component between the first and second parallel spaced apart component holders. Various component mounting assemblies and configurations may be realized using the component mounting apparatus described. The component mounting apparatus and various mounting assemblies may be used to mount a printed circuit board in a cylindrical enclosure or tubular housing, for example.
Abstract:
Adjustment of the angle of a bent sub or other steering feature in a drill string relative to a reference angle of a downhole sensor is facilitated by a rotatable coupling between the bend sub and the sensor. The rotatable coupling may be rotated to align the high side with a reference indicia and locked at the set angle. Calibration of the sensor is facilitated and opportunities for certain measurement errors are eliminated. An embodiment provides a locking mechanism comprising tapered locking fingers which are clamped against a surface by a tapered collar. Rows of ceramic balls retained in circumferential channels may be provided to permit rotation while carrying tensile and compressional forces.
Abstract:
A downhole probe is adapted to be supported in drill string sections having different internal diameters with the use of a set of interchangeable centralizers. Each centralizer is dimensioned to snugly receive the downhole probe and to bear against the bore wall of a drill-string section. Interchangeable axial supports such as spiders may also be provided in a set. The downhole probe may comprise a slick body. As drilling progresses the downhole probe may be adapted to be received in drill string sections of varying diameters.
Abstract:
A method for regulating an electromagnetic ("EM") telemetry signal sent from downhole to surface includes determining a value of a controlled parameter of the EM telemetry signal, comparing the value of the controlled parameter to a configuration value, and adjusting the value of the controlled parameter in a first direction towards the configuration value while monitoring a feedback parameter of the EM telemetry signal when the value of the controlled parameter and the configuration value differ. The controlled parameter is one of transmission voltage and transmission current, and the feedback parameter is the other of transmission voltage and transmission current. The value of the controlled parameter ceases to be adjusted in the first direction upon the earlier of either of the following occurring: the value of the controlled parameter substantially equals the configuration value, a value of the feedback parameter meets a feedback parameter cutoff threshold, and a product of the controlled and feedback parameters meets a power cutoff threshold.
Abstract:
A method for modulating a downhole telemetry signal uses a fluid pressure pulse generator that generates pressure pulses of multiple pulse heights in a drilling fluid. The method comprises: converting measurement data into a bitstream comprising symbols of a selected symbol set; encoding the bitstream into a pressure pulse telemetry signal using a modulation technique that includes amplitude shift keying, wherein each symbol of the selected symbol set is assigned a pressure pulse having a unique amplitude; and generating pressure pulses in the drilling fluid corresponding to the telemetry signal. Alternatively, the method can comprise a modulation technique that includes amplitude shift keying and phase shift keying and wherein each symbol of the selected symbol set is assigned a pressure pulse having a unique combination of amplitude and phase.
Abstract:
A method for using a downhole probe. The method comprises providing a probe, at least one vertical cross section of the probe having an area of at least pi inches squared. The method further comprises inserting the probe into a bore of a drill collar and passing a drilling fluid through the bore of drill collar at a flow velocity of less than 41 feet per second.
Abstract:
A method for regulating an electromagnetic ("EM") telemetry signal sent from downhole to surface includes determining a value of a controlled parameter of the EM telemetry signal, comparing the value of the controlled parameter to a configuration value, and adjusting the value of the controlled parameter in a first direction towards the configuration value while monitoring a feedback parameter of the EM telemetry signal when the value of the controlled parameter and the configuration value differ. The controlled parameter is one of transmission voltage and transmission current, and the feedback parameter is the other of transmission voltage and transmission current. The value of the controlled parameter ceases to be adjusted in the first direction upon the earlier of either of the following occurring: the value of the controlled parameter substantially equals the configuration value, a value of the feedback parameter meets a feedback parameter cutoff threshold, and a product of the controlled and feedback parameters meets a power cutoff threshold.
Abstract:
A component mounting apparatus for holding a rigid component in a downhole bore or a downhole collar based application includes a first body including first and second parallel spaced apart component holders disposed in a first common plane and a first support connecting the component holders together. The first and second parallel spaced apart component holders are operable to receive and grip a rigid component between the first and second parallel spaced apart component holders. Various component mounting assemblies and configurations may be realized using the component mounting apparatus described. The component mounting apparatus and various mounting assemblies may be used to mount a printed circuit board in a cylindrical enclosure or tubular housing, for example.
Abstract:
Adjustment of the angle of a bent sub or other steering feature in a drill string relative to a reference angle of a downhole sensor is facilitated by a rotatable coupling between the bent sub and the sensor. The rotatable coupling may be rotated to align the high side with a reference indicium and locked at the set angle. Rows of ceramic balls retained in circumferential channels may be provided to permit rotation while carrying tensile and compressional forces. Calibration of the sensor is facilitated and opportunities for certain measurement errors are eliminated. An embodiment provides a mechanism for locking the rotatable coupling at a desired angle. The embodiment comprises a ring with teeth that engage a downhole portion of the coupling and depressions that engage an uphole portion of the coupling.
Abstract:
A downhole probe is adapted to be supported in drill string sections having different internal diameters with the use of a set of interchangeable centralizers. Each centralizer is dimensioned to snugly receive the downhole probe and to bear against the bore wall of a drill-string section. Interchangeable axial supports such as spiders may also be provided in a set. The downhole probe may comprise a slick body. As drilling progresses the downhole probe may be adapted to be received in drill string sections of varying diameters.