Abstract:
Determination of Analytes in a Sample Matrix by Solvent Extraction A method for the assay of one or more analytes in a sample matrix comprising the steps of: performing analyte extraction on the sample matrix, said analyte extraction comprising combining the sample matrix with a solvent for an extraction period which is less than that required for reaching equilibrium; and separating the analyte containing solvent from the sample matrix; next measuring a level of analyte present in the separated solvent; and then applying in a computer a calibration by which is established a mathematical relationship between levels of analyte extracted from each of a plurality of reference samples by means of the process employed above in the extraction for the sample matrix and a reference value of the levels of analyte for each reference sample to thereby derive a measure of the level of analyte in the sample matrix. Specifically a method to determine the amount of mycotoxins in cereal grain, especially OTA (ochratoxin A) and DON (deoxynivalenol) by mixing with a solvent comprising water alcohol mixture, with 20-40% ethanol by volume.
Abstract:
The invention relates to an automated system (100; 200) and a method (300; 400) for performing analysis on a sample. The sample may e.g. be of grain, foodstuff or feed and the analysis may be for measuring the concentration of one or more specific constituents which might affect the quality of the grain, foodstuff or feed. Such constituents could e.g. be mycotoxins, such as deoxynivalenol, zearalenone, ochratoxin, fumonisin, aflatoxin, and 1-2 toxin, and/or enzymes such as amylase in general, or alpha-amylase in specific. The system (100; 200) comprises containers (10; 12; 14; 16) for the sample and for liquids used during the measurements. The container (10) for the sample comprises grinding means (20) for grinding the sample and inlet means (11 ) for inletting solvent liquid from another container (12), preferably during the grinding so as to speed up the extraction of constituents from the first sample. The system (100, 200) moreover comprises a sensor (50) for measuring the concentration of the one or more specific constituents, which may be a biosensor or another type of biosensing system.
Abstract:
An apparatus, such as a flow cytometer, for determining compositional properties of a material (38), comprises sensing means (24) having an output responsive to components of interest within a sample, here liquid (38), at a measurement location (22). A flow regulator, such as a pump (36), is provided in flow communication with the measurement location (22) and with the liquid sample (38). Control means (34) is adapted to analyse, such as by employment of an pulse height analyser (32), the output to determine a contribution thereto by noise and to control the operation of the flow regulator (36) to regulate presentation of the sample, here the flow rate, at the measurement location (22) in a manner dependent on the determined noise contribution.
Abstract:
An indicator reservoir, comprising a porous support material and an indicator substance which is enclosed in pores of the porous support material by a releasable pore-closing material, the pore closing material being bound to the porous support material by a compound that is anchored to the porous support material, the indicator substance being released from the pores when the pore-closing material binds an analyte being present in a liquid that wets the indicator reservoir.
Abstract:
A method for determining a degree of infection comprising the steps of i) preparing an un-isolated sample by adding a differentiating marker, suitably a meta-chromatic stain such as, for example, acridine orange to mammalian milk in an amount sufficient to provide a differentiation between cell types; ii) measuring a differential somatic cell count on the sample by means of a cytometer having a detection system sensitive to differences in the differentiating marker resulting from the marker becoming differently associated with different cell types in the sample; and iii) determining an indication of a degree of infection dependent on the measured differential cell count.
Abstract:
The invention relates to a device for manipulation of particles (30) in a sample liquid (32) said device comprising a source of ultrasound (16) capable of emitting ultrasound with a given wavelength, an inlet for a sample liquid (2), one or more outlets (4, 5, 6) and a compartment (14), being dimensioned to support a standing ultrasonic wave (40) of said wavelength, characterised in that the device further comprises an inlet for sheath liquid (1, 3) configured to direct a sheath liquid (34) to extend substantially in parallel to an anti-node plane (46) of the ultrasonic standing wave (40) proximate to a sheathed compartment wall. Specifically the device may be used in combination with a particle enumeration device for enumeration of somatic cells in milk.
Abstract:
Apparatus for Determining Compositional Properties of a Material An apparatus, such as a flow cytometer, for determining compositional properties of a material (38), comprises sensing means (24) having an output responsive to components of interest within a sample, here liquid (38), at a measurement location (22). A flow regulator such as a pump (36) is provided in flow communication with the measurement location (22) and with the liquid sample (38). Control means (34) is adapted to analyse, such as by employment of an pulse height analyser (32), the output to determine a contribution thereto by noise and to control the operation of the flow regulator (36) to regulate presentation of the sample, here the flow rate, at the measurement location (22) in a manner dependent on the determined noise contribution.
Abstract:
A method for determining a degree of infection comprising the steps of i) preparing an un-isolated sample by adding a differentiating marker, suitably a meta-chromatic stain such as, for example, acridine orange to mammalian milk in an amount sufficient to provide a differentiation between cell types; ii) measuring a differential somatic cell count on the sample by means of a cytometer having a detection system sensitive to differences in the differentiating marker resulting from the marker becoming differently associated with different cell types in the sample; and iii) determining an indication of a degree of infection dependent on the measured differential cell count.