Abstract:
Systems and methods are described for fabricating a varying-waveguide optical fiber. In one described method, a preform is fabricated having a core and at least one cladding region. The cladding region has a higher viscosity and the core region has a lower viscosity. The relative viscosities of the cladding region and core are chosen such that, when tension is applied to an optical fiber drawn from the preform, the applied tension is primarily borne by the cladding region thereby causing a viscoelastic strain to be frozen into the cladding region, while creating a minimal viscoelastic strain in the core. The method further includes drawing the preform into an optical fiber under an applied tension, such that a viscoelastic strain is frozen into the cladding region the frozen-in viscoelastic strain decreasing the cladding region refractive index. The cladding region refractive index is changed in a section of the optical fiber by heating the section so as to relax the viscoclastic strain frozen into the cladding region in the section of fiber, thereby increasing the cladding region refractive index in the section of fiber.
Abstract:
Techniques are described for reducing splice loss between a pair of optical fibers. A first fiber is spliced to a second fiber at a splice point. A region of the spliced fibers, including the splice point, is thermally treated to cause a controlled diffusion of dopants in the region. A controlled tension is then applied to the splice region while heating it to a predetermined temperature to produce a controlled change in the splice region's strain state. Further described is a heat and tension station for performing a heat and tension technique on a pair of spliced fibers.
Abstract:
Optical fibers are described that exhibit reduced splice loss. Further described are techniques for fabricating optical fibers exhibiting reduced splice loss. One described fiber includes a plurality of regions, one region having a higher viscosity and the other region having a lower viscosity, such that when the fiber is drawn under tension, a strain is frozen into the higher viscosity region. A lower viscosity buffer layer is sandwiched between the higher viscosity region and the lower viscosity region. The buffer layer isolates the lower viscosity region from changes in refractive index in the higher viscosity region arising from a change in the strain frozen into the higher viscosity region.
Abstract:
Systems and methods are described for reducing splice loss in an optical transmission line. A described system includes fiber guides for holding a first fiber and a second fiber in position for splicing to each other at a splice point. A heat source applies sufficient heat at the splice point to cause the first and second fibers to be fused together at the splice point, and subsequently applied heat to the splice point after the splice has been completed. The system further includes a tensioning assembly for applying a controlled, non-zero tension to the first and second fibers after they have been spliced together.