Abstract:
A communication apparatus, including: a controller configured to control to map an uplink control information (UCI) onto a radio resource wherein one time-domain symbol of a subframe where the UCI is located carries an uplink reference signal; and a transmitter configured to transmit the UCI via a Physical Channel, wherein, the controller control to map a first UCI onto Orthogonal Frequency Division Multiplexing (OFDM) symbols, in a mapping manner of time domain first, and wherein, when the sub-frame where the UCI is located contains one uplink reference signal, the OFDM symbols are close to the uplink reference signal.
Abstract:
Code generating including generating a non-correlation sequence for RS of a first resource block; spreading spectrums of elements in the non-correlation sequence for RS to be mapped to a first frequency resource of the first resource block, by using a first group of codes; second spreading spectrums of elements in the non-correlation sequence for RS to be mapped to a second frequency resource of the first resource block, by using a second group of Codes; the first and second frequency resources are adjacent frequency resources in frequency resource elements used for RS transmission in the first resource block, and the first and second groups of Codes are mirrors in column to each other; and mapping the spectrum-spread elements to the first and second frequency resources, respectively.
Abstract:
A method for resource allocation, method for channel state information transmission, base station and user equipment. Wherein the method for resource allocation includes: determining, by a base station, that it is necessary for a UE to report aperiodic CSI of relevant downlink CCs; and allocating, by the base station, corresponding resources to the UE according to the number of the relevant downlink CCs. The base station allocates corresponding resources to the UE in accordance with the number of relevant downlink CCs, resource allocation is flexible, and the transmission of UCI in case of multiple carriers is supported.
Abstract:
A method for transmitting sounding reference symbol, a base station and user equipment. The method comprises: configuring, by a base station, user equipment of a CoMP transmission mode, with parameter configuration information for transmitting SRS, the parameter configuration information including a frequency comb of the SRS and one or more pieces of the following information: cyclic shift, root sequence information, power control information, and transmission duration information, of the SRS; and transmitting the parameter configuration information to the user equipment by the base station, such that the user equipment transmits the SRS to the base station according to the parameter configuration information. The method is simple and flexible, efficiently uses limited SRS resources, and solves the problem in the prior art.
Abstract:
A method for feeding back CSI, a method for transmitting CSI-RS, UE and a base station. The method for feeding back includes: feeding back respectively, by UE, CSI corresponding to the vertical dimension and CSI corresponding to the horizontal dimension. Thereby, overhead for performing feedback of CSI in a 3D MIMNO system, or overhead for transmitting CSI-RS, may be further reduced.
Abstract:
A code generating apparatus, demodulation reference signal generating apparatus, and methods thereof. The demodulation reference signal generator includes generating a non-correlation sequence for RS of a first resource block; spreading spectrums of elements in the non-correlation sequence for RS to be mapped to a first frequency resource of the first resource block, by using a first group of codes; second spreading spectrums of elements in the non-correlation sequence for RS to be mapped to a second frequency resource of the first resource block, by using a second group of Codes; the first and second frequency resources are adjacent frequency resources in frequency resource elements used for RS transmission in the first resource block, and the first and second groups of Codes are mirrors in column to each other; and mapping the spectrum-spread elements to the first and second frequency resources, respectively.
Abstract:
Embodiments of the present invention provide a method for determining uplink control channel resources; wherein the method includes: receiving, by user equipment (UE), a specific parameter configured for a mapping manner of its enhanced physical downlink control channel (E-PDCCH) by an eNB; and determining its uplink control channel (PUCCH) resources by the UE according to a specific parameter corresponding to the mapping manner of its E-PDCCH and a PUCCH calculation formula. With the embodiments of the present invention, collision of PUCCH resources of different UE is lowered, and/or spectral efficiencies of the PUCCHs are improved.
Abstract:
Embodiments of the present invention provide a method and apparatus for triggering aperiodic feedback in coordinated multipoint transmission. The method includes: transmitting, by an eNB to UE, dynamic control information (DCI) and preconfigured feedback sets corresponding to the DCI, so that the UE aperiodically feeds back corresponding channel state information (CSI) according to the DCI and the feedback sets corresponding to the DCI; wherein the preconfigured feedback sets corresponding to the DCI are classified according to a triggered transmitting point or a CSI-RS of non-zero power, or are classified according to configured CSI, or are classified according to an interference type. With the method and apparatus of the embodiments of the present invention, a relatively good tradeoff between flexibility of aperiodic CSI feedback and signaling load in a CoMP transmission process or a joint transmission process of CoMP and CA may be achieved.
Abstract:
Embodiments of the present invention provide a downlink precoding method and data interacting method for coordinated multi-point transmission system and apparatus. The downlink precoding method includes: acquiring a precoding matrix indicator by a cooperating point and determining the precoding matrix of the cooperating point according to the precoding matrix indicator, the number of columns of the precoding matrix of the cooperating point being less than that of columns of the precoding matrix of a serving point; and performing, by the cooperating point, downlink precoding to the data to be transmitted according to the determined precoding matrix of the cooperating point. With the methods and apparatuses of the embodiments of the present invention, as the cooperating points participate only in the transmission of data of part of layers in the coordinated scenarios, the complexity of calculation and the feedback overhead are lowered in the UE end.
Abstract:
A data transmission method and system, transmitter and receiver. The method includes: mapping, by a transmitter, a plurality of data streams to a plurality of antennas of the transmitter by using precoding matrices and transmitting the plurality of data streams to a receiver via the plurality of antennas, wherein the transmitter selects the precoding matrices by taking a resource block as a granularity. With the embodiments of the present invention, the transmitter may transmit data streams to the receiver by using the precoding matrices W, and selects the precoding matrices W by taking a resource block (RB) as a granularity, so as to support DM-RS demodulation, and the receiver is not needed to perform PMI feedback, which is also applicable to a scenario where user feedback is not supported or PMI feedback is inaccurate, thereby achieving open-loop spatial multiplexing CoMP transmission.