Abstract:
A metal-oxide-semiconductor (MOS) type semiconductor device, comprising a silicon substrate, a first cathode electrode and a second cathode electrode coupled to the silicon substrate and located on distal ends of the silicon substrate, a poly-silicon (Poly-Si) gate proximally located above the silicon substrate and between the first cathode electrode and the second cathode electrode, wherein the Poly-Si gate comprises a first post extending orthogonally relative to the silicon substrate comprising a first doped silicon slab, a second post extending orthogonally relative to the silicon substrate comprising a second doped silicon slab, wherein the second post is positioned so as to create a width between the first post and the second post, an anode electrode coupled to the first post and the second post and extending laterally from the first post to the second post, and a dielectric layer disposed between the first silicon substrate and the second silicon substrate.
Abstract:
An apparatus comprising a thick waveguide comprising a first adiabatic tapering from a first location to a second location, wherein the first adiabatic tapering is wider at the first location than at the second location, and a thin slab waveguide comprising a second adiabatic tapering from the first location to the second location, wherein the second adiabatic tapering is wider at the second location than at the first location, and a third adiabatic tapering from the second location to a third location, wherein the third adiabatic tapering is wider at the second location than at the third location, wherein at least a portion of the first adiabatic tapering is adjacent to the second adiabatic tapering, and wherein the first adiabatic tapering and the second adiabatic tapering are separated from each other by a constant gap.
Abstract:
A metal-oxide-semiconductor (MOS) type semiconductor device, comprising a silicon substrate, a first cathode electrode and a second cathode electrode coupled to the silicon substrate and located on distal ends of the silicon substrate, a poly-silicon (Poly-Si) gate proximally located above the silicon substrate and between the first cathode electrode and the second cathode electrode, wherein the Poly-Si gate comprises a first post extending orthogonally relative to the silicon substrate comprising a first doped silicon slab, a second post extending orthogonally relative to the silicon substrate comprising a second doped silicon slab, wherein the second post is positioned so as to create a width between the first post and the second post, an anode electrode coupled to the first post and the second post and extending laterally from the first post to the second post, and a dielectric layer disposed between the first silicon substrate and the second silicon substrate.
Abstract:
A metal-oxide semiconductor (MOS) optical modulator including a doped semiconductor layer having a waveguide structure, a dielectric layer disposed over the waveguide structure of the doped semiconductor layer, a gate region disposed over the dielectric layer, wherein the gate region comprises a transparent electrically conductive material having a refractive index lower than that of silicon, and a metal contact disposed over the gate region. The metal contact, the gate region, and the waveguide structure of the doped semiconductor layer may be vertically aligned with each other.
Abstract:
A metal-oxide semiconductor (MOS) optical modulator including a doped semiconductor layer having a waveguide structure, a dielectric layer disposed over the waveguide structure of the doped semiconductor layer, a gate region disposed over the dielectric layer, wherein the gate region comprises a transparent electrically conductive material having a refractive index lower than that of silicon, and a metal contact disposed over the gate region. The metal contact, the gate region, and the waveguide structure of the doped semiconductor layer may be vertically aligned with each other.
Abstract:
An apparatus comprises: a first input tap; a first optical modulator coupled to the first input tap; a first output tap coupled to the first optical modulator so that the first optical modulator is positioned between the first input tap and the first output tap; and a controller indirectly coupled to the first input tap and the first output tap.
Abstract:
A laser comprises a gain medium, and a mirror coupled to the gain medium and comprising a coupler coupled to the gain medium, a phase section coupled to the coupler, a bandpass filter coupled to the phase section, and a comb reflector (CR) coupled to the bandpass filter. A laser chip package comprises a substrate, and a laser coupled to the substrate and comprising a filter comprising a first interferometer with a first transmittance, and a second interferometer with a second transmittance, wherein the filter is configured to provide a filter transmittance based on the first transmittance and the second transmittance, and a comb reflector (CR) coupled to the filter and comprising a ring with a circumference, and a refractive index, wherein the CR is configured to provide a CR reflectivity based on the circumference and the refractive index.
Abstract:
A method of fabricating an edge coupling device and an edge coupling device are provided. The method includes removing a portion of cladding material to form a trench over an inversely tapered silicon waveguide, depositing a material having a refractive index greater than silicon dioxide over remaining portions of the cladding material and in the trench, and removing a portion of the material within the trench to form a ridge waveguide.
Abstract:
A metal-oxide-semiconductor (MOS) type semiconductor device, comprising a silicon substrate, a first cathode electrode and a second cathode electrode coupled to the silicon substrate and located on distal ends of the silicon substrate, a poly-silicon (Poly-Si) gate proximally located above the silicon substrate and between the first cathode electrode and the second cathode electrode, wherein the Poly-Si gate comprises a first post extending orthogonally relative to the silicon substrate comprising a first doped silicon slab, a second post extending orthogonally relative to the silicon substrate comprising a second doped silicon slab, wherein the second post is positioned so as to create a width between the first post and the second post, an anode electrode coupled to the first post and the second post and extending laterally from the first post to the second post, and a dielectric layer disposed between the first silicon substrate and the second silicon substrate.
Abstract:
A monolithically integrated thermal tunable laser comprising a layered substrate comprising an upper surface and a lower surface, and a thermal tuning assembly comprising a heating element positioned on the upper surface, a waveguide layer positioned between the upper surface and the lower surface, and a thermal insulation layer positioned between the waveguide layer and the lower surface, wherein the thermal insulation layer is at least partially etched out of an Indium Phosphide (InP) sacrificial layer, and wherein the thermal insulation layer is positioned between Indium Gallium Arsenide (InGaAs) etch stop layers.