Abstract:
An apparatus comprising a burst-mode laser comprising an active layer and configured to emit an optical signal during a burst period, wherein a temperature change of the burst-mode laser causes the optical signal to shift in wavelength, and a heater thermally coupled to the active layer and configured to reduce a wavelength shift of the optical signal during the burst period by applying heat to the active layer based on timing of the burst period.
Abstract:
An apparatus comprising a first tunable transmitter array comprising a first tunable transmitter and a second tunable transmitter and a cyclic array waveguide grating (AWG) wavelength router coupled to the first tunable transmitter array, wherein the cyclic AWG wavelength router comprises a plurality of input ports and a plurality of output ports, wherein the cyclic AWG wavelength router is configured to receive a first optical signal emitted from a first tunable transmitter via a first input port of the plurality of input ports, receive a second optical signal emitted from a second tunable transmitter via the first input port of the plurality of input ports, and route the first optical signal and the second optical signal to the output ports dependent on one or more wavelengths used to encode the first optical signal and the second optical signal.
Abstract:
An apparatus comprising a laser comprising an active layer and configured to emit an optical signal, wherein a temperature change of the laser causes the optical signal to shift in wavelength, and a heater thermally coupled to the active layer and configured to reduce a wavelength shift of the optical signal by applying heat to the active layer.
Abstract:
An approach to proving a flexible grid architecture for time and wavelength division multiplexed passive optical networks is described. One embodiment includes an optical transmitter array configured to transmit an optical signal, an optical combiner coupled to the optical transmitter array configured to receive unlocked wavelengths from the optical transmitter array and output a single optical signal, and an optical amplifier coupled to the optical combiner configured to boost downstream optical power. In some embodiments, a WDM filter is coupled to the optical amplifier, and a tunable optical network unit (ONU) coupled to the WDM filter is configured to transmit and receive the optical signals. In still other embodiments, a cyclic demultiplexer is coupled to the optical splitter and connects to an optical receiver array configured to receive optical signals.
Abstract:
A self-characterization optical receiver comprising a tunable filter comprising a first transmission peak and configured to receive an optical signal comprising a plurality of channels at different wavelengths and output one channel at a wavelength corresponding to the first transmission peak, an optical-to-electrical (OE) converter configured to convert the one channel optical signal into an electrical signal, a monitor unit configured to adjust at least one control parameter based upon a power level of the electrical signal, and a control unit configured to adjust a heater bias current based upon control parameters received from the monitor unit, and wherein adjusting the heater bias current shifts the wavelength corresponding to the first transmission peak.
Abstract:
An optical filter comprising a first distributed Bragg reflector (DBR) layer, a second DBR layer, and an intrinsic semiconductor layer positioned between the first DBR layer and the second DBR layer, with the intrinsic semiconductor layer providing a passband wavelength for the optical filter based on a carrier density of the intrinsic semiconductor layer.
Abstract:
An apparatus comprising a burst-mode laser comprising an active layer and configured to emit an optical signal during a burst period, wherein a temperature change of the burst-mode laser causes the optical signal to shift in wavelength, and a heater thermally coupled to the active layer and configured to reduce a wavelength shift of the optical signal during the burst period by applying heat to the active layer based on timing of the burst period.
Abstract:
An optical network unit (ONU) comprising a media access controller (MAC) configured to support biasing a laser transmitter to compensate for temperature related wavelength drift receiving a transmission timing instruction from an optical network control node, obtaining transmission power information for the laser transmitter, estimating a burst mode time period for the laser transmitter according to the transmission timing instruction, and calculating a laser phase fine tuning compensation value for the laser transmitter according to the burst mode time period and the transmission power information, and forwarding the laser phase fine tuning compensation value toward a bias controller to support biasing a phase of the laser transmitter.
Abstract:
A monolithically integrated thermal tunable laser comprising a layered substrate comprising an upper surface and a lower surface, and a thermal tuning assembly comprising a heating element positioned on the upper surface, a waveguide layer positioned between the upper surface and the lower surface, and a thermal insulation layer positioned between the waveguide layer and the lower surface, wherein the thermal insulation layer is at least partially etched out of an Indium Phosphide (InP) sacrificial layer, and wherein the thermal insulation layer is positioned between Indium Gallium Arsenide (InGaAs) etch stop layers.
Abstract:
A tunable optical transmitter, comprising a tunable laser comprising a distributed Bragg reflector (DBR) section, a phase section, and a gain section, a photodiode detector (PD) optically coupled to the tunable laser, wherein the tunable optical transmitter lacks a temperature controller, and wherein the tunable optical transmitter is configured to lock onto a wavelength at different operating temperatures.