Abstract:
A cable including a conductor surrounded by a covering layer, the covering layer formed from a thermoplastic vulcanizate composition which includes a continuous phase and a dispersed phase. The continuous phase is formed of a thermoplastic polyolefin. The dispersed phase is formed of a cross-linked elastomeric polyolefin. The thermoplastic vulcanizate composition passes the Hot Creep Test at 150° C. in accordance with UL 2556 (2013) and has a dielectric loss of 3 or less. Methods of forming cables with coverings are also disclosed.
Abstract:
Cables having a conductor with a polymeric covering layer and a non-extruded coating layer made of a material based on a liquid composition including a polymer resin and a fatty acid amide. Methods of making cables are also provided.
Abstract:
A cable including a conductor surrounded by a covering layer, the covering layer formed from a thermoplastic vulcanizate composition which includes a continuous phase and a dispersed phase. The continuous phase is formed of a thermoplastic polyolefin. The dispersed phase is formed of a cross-linked elastomeric polyolefin. The thermoplastic vulcanizate composition passes the Hot Creep Test at 150° C. in accordance with UL 2556 (2013) and has a dielectric loss of 3 or less. Methods of forming cables with coverings are also disclosed.
Abstract:
The present invention relates to a crosslinked polymer containing polyphenylene sulfide (PSS) and an impact modifier, and its use as cable coverings, such as jacket or insulation. The composition contains a crosslinked polymer containing of polyphenylene sulfide (PPS) and an impact modifier. Preferably, the impact modifier is present at about 20-50 percent (by weight of the total composition), preferably about 20-30 percent; and PPS is present at about 50-80 percent (by weight of the total composition), preferably about 70-80 percent. It is preferred that the polymer is crosslinked using irradiation.
Abstract:
A polymeric coating can be applied to an overhead conductor. The overhead conductor includes one or more conductive wires, and the polymeric coating layer surrounds the one or more conductive wires. The overhead conductor can operate at a lower temperature than a bare overhead conductor with no polymeric coating layer when tested in accordance with ANSI C119.4 method. Methods of applying a polymeric coating layer to an overhead conductor are also described herein.
Abstract:
The present invention relates to a surface modified overhead conductor with a coating that allows the conductor to operate at lower temperatures. The coating contains about 5% to about 30% of an inorganic adhesive, about 45% to about 92% of a filler, about 2% to about 20% of one or more emissivity agents, and about 1% to about 5% of a stabilizer.
Abstract:
The invention provides an insulation composition for an electric cable containing a polyolefin, a permanent (non-migrating) antistatic agent, a phenolic antioxidant, and a peroxide. Preferably, the permanent antistatic agent is present at about 0.5-5 percent by weight of the total composition, preferably about 0.8-3 percent, and more preferably about 0.9-2.5 percent.
Abstract:
The present invention relates to a surface modified overhead conductor with a coating that allows the conductor to operate at lower temperatures. The coating is an inorganic, non-white coating having durable heat and wet aging characteristics. The coating preferably contains a heat radiating agent with desirable properties, and an appropriate binder/suspension agent. In a preferred embodiment, the coating has L* value of less than 80, a heat emissivity of greater than or equal to 0.5, and/or a solar absorptivity coefficient of greater than 0.3.
Abstract:
The present disclosure relates to a self-cleaning cable assembly useful for overhead high voltage electricity transmission. The self-cleaning cable assembly includes a conductor and a self-cleaning layer that surrounds the conductor and includes one or more of a photocatalyst and an electrocatalyst. The present disclosure also relates to methods of reducing surface buildup on cable assemblies for overhead high voltage electricity transmission.
Abstract:
An electrical cable includes a plurality of conductors forming a conductor core, one or more insulation layers at least partially surrounding at least one of the plurality of conductors, an outer jacket surrounding the conductor core and a film applied to the exterior surface of the outer jacket. The film includes high visibility particles. Methods of forming electrical cables are also described herein.