Abstract:
A liquid separator removing a liquid from a sample of a breathing gas flowing through an airway adapter having a channel surrounded by a wall is disclosed herein. The separator includes a chamber receiving the sample, and a membrane having an outer surface exposed to the gas flow, the membrane at least partially surrounding the chamber, which membrane separates the liquid received by the chamber. The separator also includes a supporting structure for supporting the membrane, and a connector operationally attached to the supporting structure, the connector being connectable to the adapter. The connector comprises a cavity providing a flow path for the sample from the chamber through an opening of the cavity to a sample tube. The membrane branches from a central part of the channel into at least two different branches extending to different directions.
Abstract:
A liquid separator removing a liquid from a sample of a breathing gas flowing through an airway adapter having a channel surrounded by a wall is disclosed herein. The separator includes a chamber receiving the sample, and a membrane having an outer surface exposed to the gas flow, the membrane at least partially surrounding the chamber, which membrane separates the liquid received by the chamber. The separator also includes a supporting structure for supporting the membrane, and a connector operationally attached to the supporting structure, the connector being connectable to the adapter. The connector comprises a cavity providing a flow path for the sample from the chamber through an opening of the cavity to a sample tube. The membrane branches from a central part of the channel into at least two different branches extending to different directions. (Fig. 2)
Abstract:
A liquid separator removing a liquid from a sample of a breathing gas flowing through an airway adapter having a channel surrounded by a wall is disclosed herein. The separator includes a chamber receiving the sample, and a membrane having an outer surface exposed to the gas flow, the membrane at least partially surrounding the chamber, which membrane separates the liquid received by the chamber. The separator also includes a supporting structure for supporting the membrane, and a connector operationally attached to the supporting structure, the connector being connectable to the adapter. The connector comprises a cavity providing a flow path for the sample from the chamber through an opening of the cavity to a sample tube. The membrane branches from a central part of the channel into at least two different branches extending to different directions.
Abstract:
The invention concerns a gas analyzer comprising: a measuring volume (2), a radiation source (1) for providing a beam to pass said measuring volume; a heat sink (16) for said radiation source; at least one thermal detector (3) having a hot junction within a support structure and receiving the radiation and a cold junction for reference within the same support structure and protected from said radiation; at least one optical bandpass filter (9) between said hot junction and said radiation source; and a thermal mass (11), which is formed of a material having high thermal conductance. The thermal mass has a cavity with a bottom step (34) and a rim (32), and a first length therebetween. The support structure has a frontal edge (35) and a base plate lip (33), and a second length therebetween. There is a radial gap between the thermal mass and the support structure. Press means urge said support structure in the cavity, whereupon a more efficient thermal contact is either between said frontal edge and said bottom step, or between said base plate lip and said rim. A first thermal barrier (17) is between the heat sink and the thermal mass, and a second thermal barrier (22) surrounds the thermal mass. A shield (19) formed of a material having high thermal conductance covers said second thermal barrier and is in thermal contact with said heat sink.
Abstract:
The invention concerns a gas analyzer comprising: a measuring volume (2), a radiation source (1) for providing a beam to pass said measuring volume; a heat sink (16) for said radiation source; at least one thermal detector (3) having a hot junction within a support structure and receiving the radiation and a cold junction for reference within the same support structure and protected from said radiation; at least one optical bandpass filter (9) between said hot junction and said radiation source; and a thermal mass (11), which is formed of a material having high thermal conductance. The thermal mass has a cavity with a bottom step (34) and a rim (32), and a first length therebetween. The support structure has a frontal edge (35) and a base plate lip (33), and a second length therebetween. There is a radial gap between the thermal mass and the support structure. Press means urge said support structure in the cavity, whereupon a more efficient thermal contact is either between said frontal edge and said bottom step, or between said base plate lip and said rim. A first thermal barrier (17) is between the heat sink and the thermal mass, and a second thermal barrier (22) surrounds the thermal mass. A shield (19) formed of a material having high thermal conductance covers said second thermal barrier and is in thermal contact with said heat sink.