Abstract:
A beta-phase nickel aluminide (NiAl) overlay coating (24) and method for modifying the grain structure of the coating (24) to improve its oxidation resistance. The coating (24) is deposited by a method that produces a grain structure characterized by grain boundaries (44) exposed at the outer coating surface (36). The grain boundaries (44) may also contain precipitates (40) as a result of the alloyed chemistry of the coating (24). During or after deposition, the overlay coating (24) is caused to form new grain boundaries (34) that, though open to the outer surface (36) of the coating (24), are free of precipitates or contain fewer precipitates (40) than the as-deposited grain boundaries (44). New grain boundaries (34) are preferably produced by causing the overlay coating (24) to recrystallize during coating deposition or after deposition as a result of a surface treatment followed by heat treatment.
Abstract:
A thermal barrier coating (TBC 26) and method for forming the TBC (26) on a component (10) characterized by a stabilized microstructure that resists grain growth, sintering and pore coarsening or coalescence during high temperature excursions. The TBC (26) contains elemental carbon and/or a carbon-containing gas that increase the amount of porosity (32) initially within the TBC (26) and form additional fine closed porosity (32) within the TBC (26) during subsequent exposures to high temperatures. A first method involves incorporating elemental carbon precipitates by evaporation into the TBC microstructure. A second method is to directly incorporate an insoluble gas, such as a carbon-containing gas, into an as-deposited TBC (26) and then partially sinter the TBC (26) to entrap the gas and produce fine stable porosity within the TBC (26).
Abstract:
A thermal barrier coating, or TBC (26), and method for forming the TBC (26). The TBC (26) is formed of a thermal-insulating material that contains yttria-stabilized zirconia (YSZ) alloyed with at least a third oxide. The TBC (26) is formed to also contain elemental carbon, and may potentially contain carbides and/or a carbon-containing gas that forms from the thermal decomposition of carbon. The TBC (26) is characterized by lower density and thermal conductivity, high temperature stability and improved mechanical properties. To exhibit the desired effect, the third oxide is more particularly one that increases the lattice strain energy of the TBC microstructure as a result of having an ion size that is sufficiently different than a zirconium ion.
Abstract:
A beta-phase NiAl overlay coating containing a dispersion of ceramic particles and a process for depositing the overlay coating. If the coating is used to adhere a thermal barrier coating (TBC), the TBC exhibits improved spallation resistance as a result of the dispersion of ceramic particles having a dispersion-strengthening effect on the overlay coating. The overlay coating contains at least one reactive element and is deposited so that the some of the reactive element deposits as the ceramic particles dispersed in the overlay coating.
Abstract:
A process of depositing a coating system suitable for use as an environmental barrier coating on various substrate materials, particularly those containing silicon and intended for high temperature applications such as the hostile thermal environment of a gas turbine engine. The process comprises depositing a first coating layer containing mullite, and preferably a second coating layer of an alkaline earth aluminosilicate, such as barium-strontium-aluminosilicate (BSAS), by thermal spraying while maintaining the substrate at a temperature of 800null C. or less, preferably 500null C. or less, by which a substantially crack-free coating system is produced with desirable mechanical integrity.
Abstract:
A process and apparatus for depositing a ceramic coating on a component. The process involves a technique for evaporating an evaporation source containing multiple different oxide compounds, at least one of the oxide compounds having a vapor pressure that is higher than the remaining oxide compounds, to depositing a coating of the multiple oxide compounds. A high energy beam is projected onto the evaporation source to melt and form a vapor cloud of the oxide compounds of the evaporation source, while preventing the vapor cloud from contacting and condensing on the component during an initial phase in which the relative amount of the one oxide compound in the vapor cloud is greater than its relative amount in the evaporation source. During a subsequent phase in which the relative amount of the one oxide compound in the vapor cloud has decreased to something approximately equal to its relative amount in the evaporation source, the vapor cloud is allowed to contact and condense on the component to form the coating.