Abstract:
A gas sensor device including a semiconductor substrate; one or more catalytic gate-electrodes deposited on a surface of the semiconductor substrate; one or more ohmic contacts deposited on the surface of the semiconductor substrate and a passivation layer deposited on at least a portion of the surface; wherein the semiconductor substrate includes a material selected from the group consisting of silicon carbide, diamond, Group III nitrides, alloys of Group III nitrides, zinc oxide, and any combinations thereof.
Abstract:
A holding is presented. The holding device includes a male connector comprising a first male extension and a second male extension that extend out of opposite surfaces of a male central disk, an electromagnetic guiding device continuously passing through a central hole that continuously passes through the first male extension, the male central disk and the second male extension, a reflector that is in a direct physical contact with a first end of the electromagnetic guiding device that ends at a top surface of the first male extension, and a holder that covers the first male extension to hold the reflector, and maintain the physical contact between the first end of the electromagnetic guiding device and the reflector.
Abstract:
A system detects a parameter and generates a first trip plan to automatically control the vehicle according to the first trip plan. A controller is connected to a sensor and configured to receive the parameter. The controller is configured to generate a new trip plan or modify the first trip plan into a modified trip plan based on at least one of a cumulative damage or an end of life of a propulsion subsystem component. The new trip plan or the modified trip plan is configured, during operation of the vehicle according to the new trip plan or the modified trip plan, for at least one of an adjustment in velocity or avoiding one or more operating conditions of the vehicle, relative to the first trip plan.
Abstract:
A device is presented. The device includes an electromagnetic guiding device to provide electromagnetic radiation, a reflector that reflects a portion of the electromagnetic radiation to generate a reflected portion of the electromagnetic radiation, wherein the reflector is fully immersed in a multiphase fluid, and a processing subsystem that analyzes the multiphase fluid based upon at least a portion of the reflected portion of the electromagnetic radiation, wherein a principal optical axis of the electromagnetic guiding device substantially aligns with a principal optical axis of the reflector.
Abstract:
A gas sensor device including a semiconductor substrate; one or more catalytic gate-electrodes deposited on a surface of the semiconductor substrate; one or more ohmic contacts deposited on the surface of the semiconductor substrate and a passivation layer deposited on at least a portion of the surface; wherein the semiconductor substrate includes a material selected from the group consisting of silicon carbide, diamond, Group III nitrides, alloys of Group III nitrides, zinc oxide, and any combinations thereof.
Abstract:
A device is presented. The device includes an electromagnetic guiding device to provide electromagnetic radiation, a reflector that reflects a portion of the electromagnetic radiation to generate a reflected portion of the electromagnetic radiation, wherein the reflector is fully immersed in a multiphase fluid, and a processing subsystem that analyzes the multiphase fluid based upon at least a portion of the reflected portion of the electromagnetic radiation, wherein a principal optical axis of the electromagnetic guiding device substantially aligns with a principal optical axis of the reflector.
Abstract:
A holding is presented. The holding device includes a male connector comprising a first male extension and a second male extension that extend out of opposite surfaces of a male central disk, an electromagnetic guiding device continuously passing through a central hole that continuously passes through the first male extension, the male central disk and the second male extension, a reflector that is in a direct physical contact with a first end of the electromagnetic guiding device that ends at a top surface of the first male extension, and a holder that covers the first male extension to hold the reflector, and maintain the physical contact between the first end of the electromagnetic guiding device and the reflector.