Semiconductor structure with in-device high resistivity polycrystalline semiconductor element and method

    公开(公告)号:US11545577B2

    公开(公告)日:2023-01-03

    申请号:US17114554

    申请日:2020-12-08

    Abstract: Disclosed is a structure including a semiconductor layer with a device area and, within the device area, a monocrystalline portion and polycrystalline portion(s) that extend through the monocrystalline portion. The structure includes an active device including a device component, which is in device area and which includes polycrystalline portion(s). For example, the device can be a field effect transistor (FET) (e.g., a simple FET or a multi-finger FET for a low noise amplifier or RF switch) with at least one source/drain region, which is in the device area and which includes at least one polycrystalline portion that extends through the monocrystalline portion. The embodiments can vary with regard to the type of structure (e.g., bulk or SOI), with regard to the type of device therein, and also with regard to the number, size, shape, location, orientation, etc. of the polycrystalline portion(s). Also disclosed is a method for forming the structure.

    Fuse element for process-induced damage protection structure

    公开(公告)号:US12278178B2

    公开(公告)日:2025-04-15

    申请号:US17809610

    申请日:2022-06-29

    Abstract: An integrated circuit (IC) structure includes a transistor in a device layer over a substrate, the transistor including a gate; and a plurality of interconnect layers over the device layer, the plurality of interconnect layers including a last metal layer. A process-induced damage (PID) protection structure includes a conductor coupling the gate to a well in the substrate but includes an open fuse element therein. A first metal interconnect extends from a first terminal of the open fuse element to a first pad in the last metal layer, and a second metal interconnect extending from a second terminal of the open fuse element to a second pad in the last metal layer. The fuse element is closed during fabrication, and the metal interconnects allow opening of the fuse element to deactivate the PID protection structure after fabrication.

    STRUCTURE INCLUDING RESISTOR NETWORK FOR BACK BIASING FET STACK

    公开(公告)号:US20230188131A1

    公开(公告)日:2023-06-15

    申请号:US17643567

    申请日:2021-12-09

    Abstract: A structure includes a field effect transistor (FET) stack including a plurality of transistors over a buried insulator layer. A polysilicon isolation region is in a substrate below the FET stack and the buried insulator layer. A resistor network is in the polysilicon isolation region, the resistor network having a different resistivity than the polysilicon isolation region. The resistor network may include a resistive wire having a first width and a resistive pad within the resistive wire under each FET in the FET stack. Each resistive pad has a second width larger than the first width of the resistive wire. A length of the resistive wire is different aside each resistive pad to adjust a threshold voltage of an adjacent FET in the FET stack to a predetermined value to compensate for non-linear voltage distribution between an input and an output of the FET stack.

    SEMICONDUCTOR STRUCTURE WITH IN-DEVICE HIGH RESISTIVITY POLYCRYSTALLINE SEMICONDUCTOR ELEMENT AND METHOD

    公开(公告)号:US20220181501A1

    公开(公告)日:2022-06-09

    申请号:US17114554

    申请日:2020-12-08

    Abstract: Disclosed is a structure including a semiconductor layer with a device area and, within the device area, a monocrystalline portion and polycrystalline portion(s) that extend through the monocrystalline portion. The structure includes an active device including a device component, which is in device area and which includes polycrystalline portion(s). For example, the device can be a field effect transistor (FET) (e.g., a simple FET or a multi-finger FET for a low noise amplifier or RF switch) with at least one source/drain region, which is in the device area and which includes at least one polycrystalline portion that extends through the monocrystalline portion. The embodiments can vary with regard to the type of structure (e.g., bulk or SOI), with regard to the type of device therein, and also with regard to the number, size, shape, location, orientation, etc. of the polycrystalline portion(s). Also disclosed is a method for forming the structure.

Patent Agency Ranking