Abstract:
Targets for high energy beams, such as laser beams, produced in laser fusion apparatus are described. The targets are porous spheres of deuterated hydrocarbon material, particularly deuterated polyethylene. The spheres are small and have diameters in the range of 50 to 300 microns. Higher neutron yields are obtained from these targets than from solid targets of similar materials, (viz, spherical targets of much higher density). Methods of fabricating the targets by forming them into solid spheres, cross linking their molecules and causing them to swell such that the resultant targets have a microscopically small sponge-like structure, are also described.
Abstract:
Method and apparatus for optimizing the extraction of aromatics from waxy distillates and the dewaxing of waxy raffinates in the manufacture of lubricating oils.
Abstract:
Targets for high energy beams, such as laser beams, produced in laser fusion apparatus are described. The targets are porous spheres of deuterated hydrocarbon material, particularly deuterated polyethylene. The spheres are small and have diameters in the range of 50 to 300 microns. Higher neutron yields are obtained from these targets than from solid targets of similar materials, (viz., spherical targets of much higher density). Methods of fabricating the targets by forming them into solid spheres, cross linking their molecules and causing them to swell such that the resultant targets have a microscopically small sponge-like structure, are also described.
Abstract:
A method and system to optimize the acid strength and level of total organic carbon (TOC) of process streams in which specific hydrocarbons are extracted from hydrocarbon mixtures by sulfuric acid.
Abstract:
Targets for high energy beams, such as laser beams, produced in laser fusion apparatus are described. The targets are porous spheres of deuterated hydrocarbon material, particularly deuterated polyethylene. The spheres are small and have diameters in the range of 50 to 300 microns. Higher neutron yields are obtained from these targets than from solid targets of similar materials, (viz., spherical targets of much higher density). Methods of fabricating the targets by forming them into solid spheres, cross linking their molecules and causing them to swell such that the resultant targets have a microscopically small sponge-like structure, are also described. These micro-sponge targets may be treated by being exposed to tritium gas so as to undergo tritium deuterium exchange which is of enhanced efficiency by virtue of their porous, sponge-like structure. The porous sponge-like targets of deuterated, tritiated material may be stored under liquid to enhance their stability by absorption of their own beta radiation.
Abstract:
Hollow shell laser fusion targets, such as glass microballoons, are filled with gases of the type which do not permeate through the wall of the balloon. A hole is laser-drilled in the balloon, a plug is placed over the hole and gas is introduced into the balloon through the loosely plugged hole. Thereafter the plug is melted to form a seal over the hole, entrapping the gas within the target. The plug is, for example, a polymer such as highly crystalline polystyrene, or glass.
Abstract:
In order to assay the tritium fuel content in laser fusion targets and/or to measure the pressurization of laser fusion targets of the type which use deuterium and tritium (DT) gas mixtures, without destroying the targets, the flux of beta particles which emerges from the target is measured with the aid of a gas flow proportional counter. The count rates are related to the tritium content and the pressurization. The tritium content in terms of the mass of the tritium in the target can be derived from the counting rate.
Abstract:
Method and apparatus for separating selectively ionized particles from a plasma of moving particles by application of a magnetic field gradient in a direction to which the ionized particles are to be accelerated for collection. By creating conditions of adiabatic particle motion for charged particles in the magnetic field, the selectively ionized particles will be induced to follow the magnetic field lines in the direction of weaker field strength. The direction of this gradient is made different from the general direction of particle motion to permit extraction of the ions from the plasma. The extracted ions deposit on a collection surface in enriched proportions.
Abstract:
The invention is a method to improve the prediction of the corrosivity of organic acids in petroleum crudes, feedstocks and distillation fractions by providing a more accurate, repeatable, and rapid means of determining the TAN from the IR spectrum of the material. The method can be easily practiced in refinery, terminal, and assay laboratories. It can be used in conjunction with models and hardware to optimize the usage and improve the valuation of corrosive feed stocks. The invention can be implemented on-line for blending optimization. It comprises the steps of irradiating a heated petroleum sample with IR radiation to produce its IR absorption spectrum, and predicting the TAN from the spectrum using a linear, multivariate regression model. The IR TAN value is then used as input to blending, valuation, and corrosion models.
Abstract:
A method uses near-infrared radiation to optimize the removal or separation of normal paraffins from a kerosene feed stream. The absorptivity of a feed stream and/or sievate is determined for at least one near-infrared wavelength. The weight percent of the normal paraffins in the feed stream and/or sievate is determined from the absorptivity. The determined weight percent is used to control the removal or separation of normal paraffins from the kerosene feed stream.