Abstract:
Disclosed herein are methods and systems for using prior maps for estimation of lane boundaries or other features within an environment. An example method may include receiving a location of a plurality of detected points on a roadway in an environment of an autonomous vehicle, determining, from a prior map of the roadway, a location of a plurality of reference points from a boundary marker on the roadway that correspond to the detected points on the roadway, determining distances between the detected points and the corresponding reference points based on the location of the detected points in the environment and the location of the reference points from the prior map of the roadway, determining a confidence buffer representing a threshold amount of variation associated with the prior map based at least in part on the distances between the detected points and the corresponding reference points, selecting one or more of the detected points such that the distance between a selected detected point and a corresponding reference point is less than the confidence buffer, and using the selected points to direct the autonomous vehicle along the roadway.
Abstract:
Methods and systems for detection of a construction zone sign are described. A computing device, configured to control the vehicle, may be configured to receive, from an image-capture device coupled to the computing device, images of a vicinity of the road on which the vehicle is travelling. Also, the computing device may be configured to determine image portions in the images that may depict sides of the road at a predetermined height range. Further, the computing device may be configured to detect a construction zone sign in the image portions, and determine a type of the construction zone sign. Accordingly, the computing device may be configured to modify a control strategy associated with a driving behavior of the vehicle; and control the vehicle based on the modified control strategy.
Abstract:
Methods and systems for detecting road curbs are described herein. A vehicle's computing system may receive point clouds collected in an incremental order as the vehicle navigates a path. The point clouds may include data points representative of the vehicle's environment at a given timepoint and include associated position information indicative of the vehicle's position at the timepoint. Based on the associated position information in the point clouds, the computing system may process the point clouds into a dense point cloud representation and may determine features of the representation. The computing system may provide the features to a classification system that is configured to output an estimate of whether the features are representative of a road curb. Based on the output of the classification system, the computing system may determine whether the given data points represent one or more road curbs in the vehicle's environment.
Abstract:
Methods and systems for construction zone sign detection are described. A computing device may be configured to receive a 3D point cloud of a vicinity of a road on which a vehicle is travelling. The 3D point cloud may include points corresponding to light reflected from objects in the vicinity of the road. The computing device may be configured to determine a set of points representing an area at a given height from a surface of the road, and estimate a shape associated with the set of points. Further, the computing device may be configured to determine a likelihood that the set of points represents a construction zone sign, based on the estimated shape. Based on the likelihood, the computing device may be configured to modify a control strategy associated with a driving behavior of the vehicle; and control the vehicle based on the modified control strategy.
Abstract:
Methods and systems for use of previous detections to improve lane marker detection are described. A computing device may be configured to receive lane information generated at previous time periods, and relates to detection of a lane boundary on a road of travel of a vehicle. The computing device may be configured to estimate, based on the lane information, a projection of a respective lane boundary ahead of the vehicle on the road. The computing device may further be configured to determine, based on a speed of the vehicle and geometry of the road, a level of confidence for the projection of the respective lane boundary. The computing device may also be configured to provide instructions to control the vehicle based on the projection and the level of confidence.
Abstract:
Methods and systems for detection of a construction zone sign are described. A computing device, configured to control the vehicle, may be configured to receive, from an image-capture device coupled to the computing device, images of a vicinity of the road on which the vehicle is travelling. Also, the computing device may be configured to determine image portions in the images that may depict sides of the road at a predetermined height range. Further, the computing device may be configured to detect a construction zone sign in the image portions, and determine a type of the construction zone sign. Accordingly, the computing device may be configured to modify a control strategy associated with a driving behavior of the vehicle; and control the vehicle based on the modified control strategy.
Abstract:
Methods and systems for construction zone sign detection are described. A computing device may be configured to receive a 3D point cloud of a vicinity of a road on which a vehicle is travelling. The 3D point cloud may include points corresponding to light reflected from objects in the vicinity of the road. The computing device may be configured to determine a set of points representing an area at a given height from a surface of the road, and estimate a shape associated with the set of points. Further, the computing device may be configured to determine a likelihood that the set of points represents a construction zone sign, based on the estimated shape. Based on the likelihood, the computing device may be configured to modify a control strategy associated with a driving behavior of the vehicle; and control the vehicle based on the modified control strategy.
Abstract:
Disclosed herein are methods and systems for using prior maps for estimation of lane boundaries or other features within an environment. An example method may include receiving a location of a plurality of detected points on a roadway in an environment of an autonomous vehicle, determining, from a prior map of the roadway, a location of a plurality of reference points from a boundary marker on the roadway that correspond to the detected points on the roadway, determining distances between the detected points and the corresponding reference points based on the location of the detected points in the environment and the location of the reference points from the prior map of the roadway, determining a confidence buffer representing a threshold amount of variation associated with the prior map based at least in part on the distances between the detected points and the corresponding reference points, selecting one or more of the detected points such that the distance between a selected detected point and a corresponding reference point is less than the confidence buffer, and using the selected points to direct the autonomous vehicle along the roadway.
Abstract:
Disclosed herein are methods and systems for using prior maps for estimation of lane boundaries or other features within an environment. An example method may include receiving a location of a plurality of detected points on a roadway in an environment of an autonomous vehicle, determining, from a prior map of the roadway, a location of a plurality of reference points from a boundary marker on the roadway that correspond to the detected points on the roadway, determining distances between the detected points and the corresponding reference points based on the location of the detected points in the environment and the location of the reference points from the prior map of the roadway, determining a confidence buffer representing a threshold amount of variation associated with the prior map based at least in part on the distances between the detected points and the corresponding reference points, selecting one or more of the detected points such that the distance between a selected detected point and a corresponding reference point is less than the confidence buffer, and using the selected points to direct the autonomous vehicle along the roadway.
Abstract:
Methods and systems for construction zone object detection are described. A computing device may be configured to receive, from a LIDAR, a 3D point cloud of a road on which a vehicle is travelling. The 3D point cloud may comprise points corresponding to light reflected from objects on the road. Also, the computing device may be configured to determine sets of points in the 3D point cloud representing an area within a threshold distance from a surface of the road. Further, the computing device may be configured to identify construction zone objects in the sets of points. Further, the computing device may be configured to determine a likelihood of existence of a construction zone, based on the identification. Based on the likelihood, the computing device may be configured to modify a control strategy of the vehicle; and control the vehicle based on the modified control strategy.