Abstract:
Wearable devices are described herein including a housing and a mount configured to mount the housing to an external surface of a wearer. The wearable devices further include first and second electrical contacts protruding from the housing and configured such that the electrical contacts can be used to measure a Galvanic skin resistance of skin proximate to the electrical contacts when the wearable device is mounted to the external surface of the wearer. The electrical contacts are additionally configured to deliver an electro-haptic stimulus to skin proximate to the electrical contacts when the wearable device is mounted to the external surface of the wearer. Electro-haptic stimulus could be delivered to a wearer to indicate information to the wearer, including information about a health or activity state of the wearer, about communications received by the wearable device, and about alerts generated by the wearable device.
Abstract:
A cable includes a flexible jacket extending along a length and first and second lateral axes perpendicular to the length. The jacket also defines flat major surfaces that are parallel to each other and spaced apart on opposite sides of the first lateral axis. First and second inner wire assemblies extend within the jacket. The jacket maintains the first and second inner wire assembles in predetermined positions along the first lateral axis within 0.05 mm of each other and disposed on opposing sides of the second lateral axis. First and second outer wire assemblies also extend within the jacket. The outer wire assemblies include a wire of conductive filaments and an insulating layer of an enamel material surrounding the wire. The jacket maintains the first and second outer wire assemblies in positions along the first lateral axis and spaced apart from the first and second inner wire assemblies.
Abstract:
Devices are described herein including mounts configured to removably mount electrodes and other elements of the devices to a garment (e.g., a close-fitting undergarment) of a wearer. The devices include at least two electrodes configured such that the electrodes are maintained in secure electrical contact with skin of the wearer when the device is so mounted. The devices can be mounted to garments at various locations on the torso of the wearer such that an electrocardiographic signal related to the electrical activity of the heart of the wearer can be extracted from voltage fluctuations between the at least two electrodes. Such devices can be used for continuous logging or other applications of the electrocardiographic signals of the wearer. Such logged electrocardiographic signals could be used to determine a medical or health state of the wearer.
Abstract:
Wearable devices are described herein including a housing and a mount configured to mount the housing to an external surface of a wearer. The wearable devices further include first and second electrical contacts protruding from the housing and configured such that the electrical contacts can be used to measure a Galvanic skin resistance of skin proximate to the electrical contacts when the wearable device is mounted to the external surface of the wearer. The electrical contacts are additionally configured to measure a capacitance between electrical contacts. The measured capacitance between the electrical contacts could be related to a capacitance of skin proximate to the electrical contacts when the wearable device is mounted to the external surface of the wearer. The wearable devices further include an electronically switched capacitor connected between the electrical contacts that can be operated to enable the Galvanic skin resistance and capacitance measurements described above.
Abstract:
Wearable devices are described herein including a housing and a mount configured to mount the housing to a wrist of a wearer. The wearable devices further include first and second electrical contacts configured such that the first electrical contact is in contact with skin proximate of the wrist when the wearable device is so mounted. The second electrical contact is disposed on a surface of the wearable device away from the wrist such that, when the wearer contacts the second electrical contact with a finger or other element of the arm opposite the wrist, an electrocardiographic waveform of the wearer can be extracted from voltage fluctuations between the first and second electrodes. Such wearable devices can be used for periodic logging or other applications of the electrocardiographic waveforms of the wearer. Such logged electrocardiographic waveforms could be used to determine a medical or health state of the wearer.
Abstract:
Wearable devices are described herein including at least two photodetectors and a mount configured to mount the at least two photodetectors to an external surface of a wearer. The at least two photodetectors are configured to detect alignment between the wearable device and a target on or in the body of the wearer (e.g., to detect the location of vasculature within the body of the wearer relative to the at least two photodetectors). Alignment of the at least two photodetectors relative to the target could enable detection of one or more physiological properties of the wearer. For example, the wearable device could include a sensor configured to detect a property of the target when the sensor is above the target, and alignment of the target relative to the at least two photodetectors could include the sensor being located above the target.
Abstract:
An auxiliary component unit for use with a head-mounted device is disclosed. The device can have a first side arm with and an extension arm extending at least partially therealong and configured to present information to the user via a display extending therefrom, a second side arm opposite the first side arm, and an external connection feature. The auxiliary component includes a first housing containing a first electronic component therein and a first attachment member extending from the first housing and configured to removably affix the auxiliary component with a portion of the second side arm of the head-mounted device. The auxiliary component also includes a wiring component in electronic communication with the first electronic component and attachable with the external connection feature of the device.
Abstract:
An auxiliary component unit for use with a head-mounted device is disclosed. The device can have a first side arm with and an extension arm extending at least partially therealong and configured to present information to the user via a display extending therefrom, a second side arm opposite the first side arm, and an external connection feature. The auxiliary component includes a first housing containing a first electronic component therein and a first attachment member extending from the first housing and configured to removably affix the auxiliary component with a portion of the second side arm of the head-mounted device. The auxiliary component also includes a wiring component in electronic communication with the first electronic component and attachable with the external connection feature of the device.
Abstract:
A system is configured to discriminate amongst different environments based in part on characteristics of ambient light. Ambient light intensity is measured using a light-sensitive element configured to generate an output signal indicative of an intensity of light incident on the light-sensitive element. A controller is configured to obtain a set of ambient light measurements using the light-sensitive element, and determine that the measurements correspond to a particular ambient light profile. The particular ambient light profile can be one of multiple ambient light profiles that each correspond to a different environment and/or context.
Abstract:
A system and method are provided that allow for localization of a mobile device using detected magnetic signals and magnetic survey data. The magnetic signals may be produced by one or more magnetic signal sources, which are located at particular positions. The mobile device may be localized without information regarding the positions of the magnetic signal sources.